Cargando…

Histone acetylation-independent transcription stimulation by a histone chaperone

Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical...

Descripción completa

Detalles Bibliográficos
Autores principales: Kato, Kohsuke, Miyaji-Yamaguchi, Mary, Okuwaki, Mitsuru, Nagata, Kyosuke
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1807960/
https://www.ncbi.nlm.nih.gov/pubmed/17179179
http://dx.doi.org/10.1093/nar/gkl1077
Descripción
Sumario:Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical properties have been well studied. By performing microarray analyses, we found that TAF-I stimulates the transcription of a sub-set of genes. The transcription of endogenous genes that was up-regulated by TAF-I was found to be additively stimulated by histone acetylation. On performing an experiment with a cell line containing a model gene integrated into the chromosome, TAF-I was found to stimulate the model gene transcription in a histone chaperone activity-dependent manner additively with histone acetylation. TAF-I bound to the core histones and remodeled the chromatin structure independent of the N-terminal histone tail and its acetylation level in vitro. These results suggest that TAF-I remodel the chromatin structure through its interaction with the core domain of the histones, including the histone fold, and this mechanism is independent of the histone acetylation status.