Cargando…

Aberrant nuclear localization of β-catenin without genetic alterations in β-catenin or Axin genes in esophageal cancer

BACKGROUND: β-catenin is a multifunctional protein involved in two apparently independent processes: cell-cell adhesion and signal transduction. β-catenin is involved in Wnt signaling pathway that regulates cellular differentiation and proliferation. In this study, we investigated the expression pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kudo, Junzo, Nishiwaki, Tadashi, Haruki, Nobuhiro, Ishiguro, Hideyuki, Shibata, Yasuyuki, Terashita, Yukio, Sugiura, Hironori, Shinoda, Noriyuki, Kimura, Masahiro, Kuwabara, Yoshiyuki, Fujii, Yoshitaka
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808060/
https://www.ncbi.nlm.nih.gov/pubmed/17309796
http://dx.doi.org/10.1186/1477-7819-5-21
Descripción
Sumario:BACKGROUND: β-catenin is a multifunctional protein involved in two apparently independent processes: cell-cell adhesion and signal transduction. β-catenin is involved in Wnt signaling pathway that regulates cellular differentiation and proliferation. In this study, we investigated the expression pattern of β-catenin and cyclin D1 using immunohistochemistry and searched for mutations in exon 3 of the β-catenin gene and Axin gene in esophageal squamous cell carcinoma. MATERIALS AND METHODS: Samples were obtained from 50 esophageal cancer patients. Immunohistochemical staining for β-catenin and cyclin D1 was done. Mutational analyses of the exon3 of the β-catenin gene and Axin gene were performed on tumors with nuclear β-catenin expression. RESULTS: Four (8%) esophageal cancer tissues showed high nuclear β-catenin staining. Overexpression of cyclin D1 was observed in 27 out of 50 (54%) patients. All four cases that showed nuclear β-catenin staining overexpressed cyclin D1. No relationship was observed between the expression pattern of β-catenin and cyclin D1 and age, sex, tumor size, stage, differentiation grade, lymph node metastasis, response to chemotherapy, or survival. No mutational change was found in β-catenin exon 3 in the four cases with nuclear β-catenin staining. Sequencing analysis of the Axin cDNA revealed only a splicing variant (108 bp deletion, position 2302–2409) which was present in the paired normal mucosa. CONCLUSION: A fraction of esophageal squamous cell carcinomas have abnormal nuclear accumulation of β-catenin accompanied with increased cyclin D1 expression. Mutations in β-catenin or axin genes are not responsible for this abnormal localization of β-catenin.