Cargando…
Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans
BACKGROUND: Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood. METHODS AND FINDINGS: The current study w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808482/ https://www.ncbi.nlm.nih.gov/pubmed/17341128 http://dx.doi.org/10.1371/journal.pmed.0040076 |
_version_ | 1782132546585231360 |
---|---|
author | Civitarese, Anthony E Carling, Stacy Heilbronn, Leonie K Hulver, Mathew H Ukropcova, Barbara Deutsch, Walter A Smith, Steven R Ravussin, Eric |
author_facet | Civitarese, Anthony E Carling, Stacy Heilbronn, Leonie K Hulver, Mathew H Ukropcova, Barbara Deutsch, Walter A Smith, Steven R Ravussin, Eric |
author_sort | Civitarese, Anthony E |
collection | PubMed |
description | BACKGROUND: Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood. METHODS AND FINDINGS: The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 ± 1.0 y), overweight (body mass index, 27.8 ± 0.7 kg/m(2)) individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX), 12.5% CR + 12.5% increased energy expenditure (EE). In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, −135 ± 42 kcal/d, p = 0.002 and CREX, −117 ± 52 kcal/d, p = 0.008). Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05). In parallel, mitochondrial DNA content increased by 35% ± 5% in the CR group (p = 0.005) and 21% ± 4% in the CREX group (p < 0.004), with no change in the control group (2% ± 2%). However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid) cycle (citrate synthase), beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase), and electron transport chain (cytochrome C oxidase II) was unchanged. DNA damage was reduced from baseline in the CR (−0.56 ± 0.11 arbitrary units, p = 0.003) and CREX (−0.45 ± 0.12 arbitrary units, p = 0.011), but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling) induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR. CONCLUSIONS: The observed increase in muscle mitochondrial DNA in association with a decrease in whole body oxygen consumption and DNA damage suggests that caloric restriction improves mitochondrial function in young non-obese adults. |
format | Text |
id | pubmed-1808482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-18084822007-03-24 Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans Civitarese, Anthony E Carling, Stacy Heilbronn, Leonie K Hulver, Mathew H Ukropcova, Barbara Deutsch, Walter A Smith, Steven R Ravussin, Eric PLoS Med Research Article BACKGROUND: Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood. METHODS AND FINDINGS: The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 ± 1.0 y), overweight (body mass index, 27.8 ± 0.7 kg/m(2)) individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX), 12.5% CR + 12.5% increased energy expenditure (EE). In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, −135 ± 42 kcal/d, p = 0.002 and CREX, −117 ± 52 kcal/d, p = 0.008). Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05). In parallel, mitochondrial DNA content increased by 35% ± 5% in the CR group (p = 0.005) and 21% ± 4% in the CREX group (p < 0.004), with no change in the control group (2% ± 2%). However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid) cycle (citrate synthase), beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase), and electron transport chain (cytochrome C oxidase II) was unchanged. DNA damage was reduced from baseline in the CR (−0.56 ± 0.11 arbitrary units, p = 0.003) and CREX (−0.45 ± 0.12 arbitrary units, p = 0.011), but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling) induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR. CONCLUSIONS: The observed increase in muscle mitochondrial DNA in association with a decrease in whole body oxygen consumption and DNA damage suggests that caloric restriction improves mitochondrial function in young non-obese adults. Public Library of Science 2007-03 2007-03-06 /pmc/articles/PMC1808482/ /pubmed/17341128 http://dx.doi.org/10.1371/journal.pmed.0040076 Text en © 2007 Civitarese et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Civitarese, Anthony E Carling, Stacy Heilbronn, Leonie K Hulver, Mathew H Ukropcova, Barbara Deutsch, Walter A Smith, Steven R Ravussin, Eric Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title | Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title_full | Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title_fullStr | Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title_full_unstemmed | Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title_short | Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans |
title_sort | calorie restriction increases muscle mitochondrial biogenesis in healthy humans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808482/ https://www.ncbi.nlm.nih.gov/pubmed/17341128 http://dx.doi.org/10.1371/journal.pmed.0040076 |
work_keys_str_mv | AT civitareseanthonye calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT carlingstacy calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT heilbronnleoniek calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT hulvermathewh calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT ukropcovabarbara calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT deutschwaltera calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT smithstevenr calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans AT ravussineric calorierestrictionincreasesmusclemitochondrialbiogenesisinhealthyhumans |