Cargando…

The Stem Cell Population of the Human Colon Crypt: Analysis via Methylation Patterns

The analysis of methylation patterns is a promising approach to investigate the genealogy of cell populations in an organism. In a stem cell–niche scenario, sampled methylation patterns are the stochastic outcome of a complex interplay between niche structural features such as the number of stem cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicolas, Pierre, Kim, Kyoung-Mee, Shibata, Darryl, Tavaré, Simon
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808490/
https://www.ncbi.nlm.nih.gov/pubmed/17335343
http://dx.doi.org/10.1371/journal.pcbi.0030028
Descripción
Sumario:The analysis of methylation patterns is a promising approach to investigate the genealogy of cell populations in an organism. In a stem cell–niche scenario, sampled methylation patterns are the stochastic outcome of a complex interplay between niche structural features such as the number of stem cells within a niche and the niche succession time, the methylation/demethylation process, and the randomness due to sampling. As a consequence, methylation pattern studies can reveal niche characteristics but also require appropriate statistical methods. The analysis of methylation patterns sampled from colon crypts is a prototype of such a study. Previous analyses were based on forward simulation of the cell content of the whole crypt and subsequent comparisons between simulated and experimental data using a few statistics as a proxy to summarize the data. In this paper we develop a more powerful method to analyze these data based on coalescent modelling and Bayesian inference. Results support a scenario where the colon crypt is maintained by a high number of stem cells; the posterior indicates a number greater than eight and the posterior mode is between 15 and 20. The results also provide further evidence for synergistic effects in the methylation/demethylation process that could for the first time be quantitatively assessed through their long-term consequences such as the coexistence of hypermethylated and hypomethylated patterns in the same colon crypt.