Cargando…
PepDist: A New Framework for Protein-Peptide Binding Prediction based on Learning Peptide Distance Functions
BACKGROUND: Many different aspects of cellular signalling, trafficking and targeting mechanisms are mediated by interactions between proteins and peptides. Representative examples are MHC-peptide complexes in the immune system. Developing computational methods for protein-peptide binding prediction...
Autores principales: | Hertz, Tomer, Yanover, Chen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810314/ https://www.ncbi.nlm.nih.gov/pubmed/16723006 http://dx.doi.org/10.1186/1471-2105-7-S1-S3 |
Ejemplares similares
-
Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles
por: Luo, Fei, et al.
Publicado: (2013) -
Prediction of peptides binding to MHC class I and II alleles by temporal motif mining
por: Meydan, Cem, et al.
Publicado: (2013) -
Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis
por: Luo, Heng, et al.
Publicado: (2015) -
PepSite: prediction of peptide-binding sites from protein surfaces
por: Trabuco, Leonardo G., et al.
Publicado: (2012) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021)