Cargando…
A cautionary note regarding count models of alcohol consumption in randomized controlled trials
BACKGROUND: Alcohol consumption is commonly used as a primary outcome in randomized alcohol treatment studies. The distribution of alcohol consumption is highly skewed, particularly in subjects with alcohol dependence. METHODS: In this paper, we will consider the use of count models for outcomes in...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810542/ https://www.ncbi.nlm.nih.gov/pubmed/17302984 http://dx.doi.org/10.1186/1471-2288-7-9 |
Sumario: | BACKGROUND: Alcohol consumption is commonly used as a primary outcome in randomized alcohol treatment studies. The distribution of alcohol consumption is highly skewed, particularly in subjects with alcohol dependence. METHODS: In this paper, we will consider the use of count models for outcomes in a randomized clinical trial setting. These include the Poisson, over-dispersed Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial. We compare the Type-I error rate of these methods in a series of simulation studies of a randomized clinical trial, and apply the methods to the ASAP (Addressing the Spectrum of Alcohol Problems) trial. RESULTS: Standard Poisson models provide a poor fit for alcohol consumption data from our motivating example, and did not preserve Type-I error rates for the randomized group comparison when the true distribution was over-dispersed Poisson. For the ASAP trial, where the distribution of alcohol consumption featured extensive over-dispersion, there was little indication of significant randomization group differences, except when the standard Poisson model was fit. CONCLUSION: As with any analysis, it is important to choose appropriate statistical models. In simulation studies and in the motivating example, the standard Poisson was not robust when fit to over-dispersed count data, and did not maintain the appropriate Type-I error rate. To appropriately model alcohol consumption, more flexible count models should be routinely employed. |
---|