Cargando…
Supervised group Lasso with applications to microarray data analysis
BACKGROUND: A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to h...
Autores principales: | Ma, Shuangge, Song, Xiao, Huang, Jian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821041/ https://www.ncbi.nlm.nih.gov/pubmed/17316436 http://dx.doi.org/10.1186/1471-2105-8-60 |
Ejemplares similares
-
Regularized binormal ROC method in disease classification using microarray data
por: Ma, Shuangge, et al.
Publicado: (2006) -
Additive risk survival model with microarray data
por: Ma, Shuangge, et al.
Publicado: (2007) -
Regularized gene selection in cancer microarray meta-analysis
por: Ma, Shuangge, et al.
Publicado: (2009) -
Empirical study of supervised gene screening
por: Ma, Shuangge
Publicado: (2006) -
The partitioned LASSO-patternsearch algorithm with application to gene expression data
por: Shi, Weiliang, et al.
Publicado: (2012)