Cargando…
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
BACKGROUND: Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and app...
Autores principales: | Zhao, Xin, Cheung, Leo Wang-Kit |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821044/ https://www.ncbi.nlm.nih.gov/pubmed/17328811 http://dx.doi.org/10.1186/1471-2105-8-67 |
Ejemplares similares
-
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
por: Marczyk, Michal, et al.
Publicado: (2013) -
Gene selection for classification of microarray data based on the Bayes error
por: Zhang, Ji-Gang, et al.
Publicado: (2007) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006) -
Classification of heterogeneous microarray data by maximum entropy kernel
por: Fujibuchi, Wataru, et al.
Publicado: (2007) -
Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
por: Warnat, Patrick, et al.
Publicado: (2005)