Cargando…
Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance
PPARγ is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARγ in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact wi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821092/ https://www.ncbi.nlm.nih.gov/pubmed/17011503 http://dx.doi.org/10.1016/j.cmet.2006.09.003 |
_version_ | 1782132678694273024 |
---|---|
author | Agostini, Maura Schoenmakers, Erik Mitchell, Catherine Szatmari, Istvan Savage, David Smith, Aaron Rajanayagam, Odelia Semple, Robert Luan, Jian'an Bath, Louise Zalin, Anthony Labib, Mourad Kumar, Sudhesh Simpson, Helen Blom, Dirk Marais, David Schwabe, John Barroso, Inês Trembath, Richard Wareham, Nicholas Nagy, Laszlo Gurnell, Mark O'Rahilly, Stephen Chatterjee, Krishna |
author_facet | Agostini, Maura Schoenmakers, Erik Mitchell, Catherine Szatmari, Istvan Savage, David Smith, Aaron Rajanayagam, Odelia Semple, Robert Luan, Jian'an Bath, Louise Zalin, Anthony Labib, Mourad Kumar, Sudhesh Simpson, Helen Blom, Dirk Marais, David Schwabe, John Barroso, Inês Trembath, Richard Wareham, Nicholas Nagy, Laszlo Gurnell, Mark O'Rahilly, Stephen Chatterjee, Krishna |
author_sort | Agostini, Maura |
collection | PubMed |
description | PPARγ is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARγ in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARγ coactivators and inhibit coexpressed wild-type receptor. Expression of PPARγ target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARγ action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators. |
format | Text |
id | pubmed-1821092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-18210922007-12-11 Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance Agostini, Maura Schoenmakers, Erik Mitchell, Catherine Szatmari, Istvan Savage, David Smith, Aaron Rajanayagam, Odelia Semple, Robert Luan, Jian'an Bath, Louise Zalin, Anthony Labib, Mourad Kumar, Sudhesh Simpson, Helen Blom, Dirk Marais, David Schwabe, John Barroso, Inês Trembath, Richard Wareham, Nicholas Nagy, Laszlo Gurnell, Mark O'Rahilly, Stephen Chatterjee, Krishna Cell Metab Short Article PPARγ is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARγ in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARγ coactivators and inhibit coexpressed wild-type receptor. Expression of PPARγ target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARγ action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators. Cell Press 2006-10 /pmc/articles/PMC1821092/ /pubmed/17011503 http://dx.doi.org/10.1016/j.cmet.2006.09.003 Text en © 2006 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Short Article Agostini, Maura Schoenmakers, Erik Mitchell, Catherine Szatmari, Istvan Savage, David Smith, Aaron Rajanayagam, Odelia Semple, Robert Luan, Jian'an Bath, Louise Zalin, Anthony Labib, Mourad Kumar, Sudhesh Simpson, Helen Blom, Dirk Marais, David Schwabe, John Barroso, Inês Trembath, Richard Wareham, Nicholas Nagy, Laszlo Gurnell, Mark O'Rahilly, Stephen Chatterjee, Krishna Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title | Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title_full | Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title_fullStr | Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title_full_unstemmed | Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title_short | Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance |
title_sort | non-dna binding, dominant-negative, human pparγ mutations cause lipodystrophic insulin resistance |
topic | Short Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821092/ https://www.ncbi.nlm.nih.gov/pubmed/17011503 http://dx.doi.org/10.1016/j.cmet.2006.09.003 |
work_keys_str_mv | AT agostinimaura nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT schoenmakerserik nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT mitchellcatherine nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT szatmariistvan nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT savagedavid nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT smithaaron nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT rajanayagamodelia nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT semplerobert nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT luanjianan nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT bathlouise nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT zalinanthony nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT labibmourad nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT kumarsudhesh nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT simpsonhelen nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT blomdirk nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT maraisdavid nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT schwabejohn nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT barrosoines nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT trembathrichard nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT warehamnicholas nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT nagylaszlo nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT gurnellmark nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT orahillystephen nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance AT chatterjeekrishna nondnabindingdominantnegativehumanppargmutationscauselipodystrophicinsulinresistance |