Cargando…
Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers
BACKGROUND: Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have pre...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828156/ https://www.ncbi.nlm.nih.gov/pubmed/17335571 http://dx.doi.org/10.1186/1471-2229-7-11 |
_version_ | 1782132724677476352 |
---|---|
author | Diretto, Gianfranco Welsch, Ralf Tavazza, Raffaela Mourgues, Fabienne Pizzichini, Daniele Beyer, Peter Giuliano, Giovanni |
author_facet | Diretto, Gianfranco Welsch, Ralf Tavazza, Raffaela Mourgues, Fabienne Pizzichini, Daniele Beyer, Peter Giuliano, Giovanni |
author_sort | Diretto, Gianfranco |
collection | PubMed |
description | BACKGROUND: Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. RESULTS: In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. CONCLUSION: Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content. |
format | Text |
id | pubmed-1828156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18281562007-03-17 Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers Diretto, Gianfranco Welsch, Ralf Tavazza, Raffaela Mourgues, Fabienne Pizzichini, Daniele Beyer, Peter Giuliano, Giovanni BMC Plant Biol Research Article BACKGROUND: Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. RESULTS: In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. CONCLUSION: Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content. BioMed Central 2007-03-02 /pmc/articles/PMC1828156/ /pubmed/17335571 http://dx.doi.org/10.1186/1471-2229-7-11 Text en Copyright © 2007 Diretto et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Diretto, Gianfranco Welsch, Ralf Tavazza, Raffaela Mourgues, Fabienne Pizzichini, Daniele Beyer, Peter Giuliano, Giovanni Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title | Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title_full | Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title_fullStr | Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title_full_unstemmed | Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title_short | Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
title_sort | silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828156/ https://www.ncbi.nlm.nih.gov/pubmed/17335571 http://dx.doi.org/10.1186/1471-2229-7-11 |
work_keys_str_mv | AT direttogianfranco silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT welschralf silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT tavazzaraffaela silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT mourguesfabienne silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT pizzichinidaniele silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT beyerpeter silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers AT giulianogiovanni silencingofbetacarotenehydroxylaseincreasestotalcarotenoidandbetacarotenelevelsinpotatotubers |