Cargando…
Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction
Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete anno...
Autores principales: | Bernal, Axel, Crammer, Koby, Hatzigeorgiou, Artemis, Pereira, Fernando |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828702/ https://www.ncbi.nlm.nih.gov/pubmed/17367206 http://dx.doi.org/10.1371/journal.pcbi.0030054 |
Ejemplares similares
-
Reranking candidate gene models with cross-species comparison for improved gene prediction
por: Liu, Qian, et al.
Publicado: (2008) -
Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data
por: Reczko, Martin, et al.
Publicado: (2012) -
Solving the transcription start site identification problem with ADAPT-CAGE: a Machine Learning algorithm for the analysis of CAGE data
por: Georgakilas, Georgios K., et al.
Publicado: (2020) -
DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs
por: Paraskevopoulou, Maria D., et al.
Publicado: (2013) -
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
por: Paraskevopoulou, Maria D., et al.
Publicado: (2018)