Cargando…
Identification of plant promoter constituents by analysis of local distribution of short sequences
BACKGROUND: Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1832190/ https://www.ncbi.nlm.nih.gov/pubmed/17346352 http://dx.doi.org/10.1186/1471-2164-8-67 |
_version_ | 1782132813536952320 |
---|---|
author | Yamamoto, Yoshiharu Y Ichida, Hiroyuki Matsui, Minami Obokata, Junichi Sakurai, Tetsuya Satou, Masakazu Seki, Motoaki Shinozaki, Kazuo Abe, Tomoko |
author_facet | Yamamoto, Yoshiharu Y Ichida, Hiroyuki Matsui, Minami Obokata, Junichi Sakurai, Tetsuya Satou, Masakazu Seki, Motoaki Shinozaki, Kazuo Abe, Tomoko |
author_sort | Yamamoto, Yoshiharu Y |
collection | PubMed |
description | BACKGROUND: Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to show local distribution within promoters, and this feature has been successfully utilized for extraction of promoter constituents from human genome. RESULTS: LDSS (Local Distribution of Short Sequences) profiles of short sequences along the plant promoter have been analyzed in silico, and hundreds of hexamer and octamer sequences have been identified as having localized distributions within promoters of Arabidopsis thaliana and rice. Based on their localization patterns, the identified sequences could be classified into three groups, pyrimidine patch (Y Patch), TATA box, and REG (Regulatory Element Group). Sequences of the TATA box group are consistent with the ones reported in previous studies. The REG group includes more than 200 sequences, and half of them correspond to known cis-elements. The other REG subgroups, together with about a hundred uncategorized sequences, are suggested to be novel cis-regulatory elements. Comparison of LDSS-positive sequences between Arabidopsis and rice has revealed moderate conservation of elements and common promoter architecture. In addition, a dimer motif named the YR Rule (C/T A/G) has been identified at the transcription start site (-1/+1). This rule also fits both Arabidopsis and rice promoters. CONCLUSION: LDSS was successfully applied to plant genomes and hundreds of putative promoter elements have been extracted as LDSS-positive octamers. Identified promoter architecture of monocot and dicot are well conserved, but there are moderate variations in the utilized sequences. |
format | Text |
id | pubmed-1832190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18321902007-03-27 Identification of plant promoter constituents by analysis of local distribution of short sequences Yamamoto, Yoshiharu Y Ichida, Hiroyuki Matsui, Minami Obokata, Junichi Sakurai, Tetsuya Satou, Masakazu Seki, Motoaki Shinozaki, Kazuo Abe, Tomoko BMC Genomics Research Article BACKGROUND: Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to show local distribution within promoters, and this feature has been successfully utilized for extraction of promoter constituents from human genome. RESULTS: LDSS (Local Distribution of Short Sequences) profiles of short sequences along the plant promoter have been analyzed in silico, and hundreds of hexamer and octamer sequences have been identified as having localized distributions within promoters of Arabidopsis thaliana and rice. Based on their localization patterns, the identified sequences could be classified into three groups, pyrimidine patch (Y Patch), TATA box, and REG (Regulatory Element Group). Sequences of the TATA box group are consistent with the ones reported in previous studies. The REG group includes more than 200 sequences, and half of them correspond to known cis-elements. The other REG subgroups, together with about a hundred uncategorized sequences, are suggested to be novel cis-regulatory elements. Comparison of LDSS-positive sequences between Arabidopsis and rice has revealed moderate conservation of elements and common promoter architecture. In addition, a dimer motif named the YR Rule (C/T A/G) has been identified at the transcription start site (-1/+1). This rule also fits both Arabidopsis and rice promoters. CONCLUSION: LDSS was successfully applied to plant genomes and hundreds of putative promoter elements have been extracted as LDSS-positive octamers. Identified promoter architecture of monocot and dicot are well conserved, but there are moderate variations in the utilized sequences. BioMed Central 2007-03-08 /pmc/articles/PMC1832190/ /pubmed/17346352 http://dx.doi.org/10.1186/1471-2164-8-67 Text en Copyright © 2007 Yamamoto et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yamamoto, Yoshiharu Y Ichida, Hiroyuki Matsui, Minami Obokata, Junichi Sakurai, Tetsuya Satou, Masakazu Seki, Motoaki Shinozaki, Kazuo Abe, Tomoko Identification of plant promoter constituents by analysis of local distribution of short sequences |
title | Identification of plant promoter constituents by analysis of local distribution of short sequences |
title_full | Identification of plant promoter constituents by analysis of local distribution of short sequences |
title_fullStr | Identification of plant promoter constituents by analysis of local distribution of short sequences |
title_full_unstemmed | Identification of plant promoter constituents by analysis of local distribution of short sequences |
title_short | Identification of plant promoter constituents by analysis of local distribution of short sequences |
title_sort | identification of plant promoter constituents by analysis of local distribution of short sequences |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1832190/ https://www.ncbi.nlm.nih.gov/pubmed/17346352 http://dx.doi.org/10.1186/1471-2164-8-67 |
work_keys_str_mv | AT yamamotoyoshiharuy identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT ichidahiroyuki identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT matsuiminami identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT obokatajunichi identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT sakuraitetsuya identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT satoumasakazu identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT sekimotoaki identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT shinozakikazuo identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences AT abetomoko identificationofplantpromoterconstituentsbyanalysisoflocaldistributionofshortsequences |