Cargando…
Feeding oxidized fat during pregnancy up-regulates expression of PPARα-responsive genes in the liver of rat fetuses
BACKGROUND: Feeding oxidized fats causes activation of peroxisome proliferator-activated receptor α (PPARα) in the liver of rats. However, whether feeding oxidized fat during pregnancy also results in activation of PPARα in fetal liver is unknown. Thus, this study aimed to explore whether feeding ox...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1832193/ https://www.ncbi.nlm.nih.gov/pubmed/17352811 http://dx.doi.org/10.1186/1476-511X-6-6 |
Sumario: | BACKGROUND: Feeding oxidized fats causes activation of peroxisome proliferator-activated receptor α (PPARα) in the liver of rats. However, whether feeding oxidized fat during pregnancy also results in activation of PPARα in fetal liver is unknown. Thus, this study aimed to explore whether feeding oxidized fat during pregnancy causes a PPARα response in fetal liver. Two experiments with pregnant rats which were administered three different diets (control; oxidized fat; clofibrate as positive control) in a controlled feeding regimen during either late pregnancy (first experiment) or whole pregnancy (second experiment) were performed. RESULTS: In both experiments pregnant rats treated with oxidized fat or clofibrate had higher relative mRNA concentrations of the PPARα-responsive genes acyl-CoA oxidase (ACO), cytochrome P(450 )4A1 (CYP4A1), L-type carnitin-palmitoyl transferase I (L-CPT I), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-CoA dehydrogenase (LCAD) in the liver than control rats (P < 0.05). In addition, in both experiments fetuses of the oxidized fat group and the clofibrate group also had markedly higher relative mRNA concentrations of ACO, CYP4A1, CPT I, MCAD, and LCAD in the liver than those of the control group (P < 0.05), whereas the relative mRNA concentrations of PPARα, SREBP-1c, and FAS did not differ between treatment groups. In the second experiment treatment with oxidized fat also reduced triacylglycerol concentrations in the livers of pregnant rats and fetuses (P < 0.05). CONCLUSION: The present study demonstrates for the first time that components of oxidized fat with PPARα activating potential are able to induce a PPARα response in the liver of fetuses. Moreover, the present study shows that feeding oxidized fat during whole pregnancy, but not during late pregnancy, lowers triacylglycerol concentrations in fetal livers. |
---|