Cargando…
Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms
BACKGROUND: Modeling cancer-related regulatory modules from gene expression profiling of cancer tissues is expected to contribute to our understanding of cancer biology as well as developments of new diagnose and therapies. Several mathematical models have been used to explore the phenomena of trans...
Autores principales: | Chiang, Jung-Hsien, Chao, Shih-Yi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838431/ https://www.ncbi.nlm.nih.gov/pubmed/17359522 http://dx.doi.org/10.1186/1471-2105-8-91 |
Ejemplares similares
-
Reverse engineering module networks by PSO-RNN hybrid modeling
por: Zhang, Yuji, et al.
Publicado: (2009) -
A Model Study on Raw Material Chemical Composition to Predict Sinter Quality Based on GA-RNN
por: Li, Yifan, et al.
Publicado: (2022) -
piRNN: deep learning algorithm for piRNA prediction
por: Wang, Kai, et al.
Publicado: (2018) -
RNN for stop search in ATLAS
por: Arrubarrena Tame, Zulit Paola
Publicado: (2019) -
Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN
por: Gan, Yanglan, et al.
Publicado: (2022)