Cargando…

Model based analysis of real-time PCR data from DNA binding dye protocols

BACKGROUND: Reverse transcription followed by real-time PCR is widely used for quantification of specific mRNA, and with the use of double-stranded DNA binding dyes it is becoming a standard for microarray data validation. Despite the kinetic information generated by real-time PCR, most popular anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Alvarez, Mariano J, Vila-Ortiz, Guillermo J, Salibe, Mariano C, Podhajcer, Osvaldo L, Pitossi, Fernando J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838433/
https://www.ncbi.nlm.nih.gov/pubmed/17349040
http://dx.doi.org/10.1186/1471-2105-8-85
Descripción
Sumario:BACKGROUND: Reverse transcription followed by real-time PCR is widely used for quantification of specific mRNA, and with the use of double-stranded DNA binding dyes it is becoming a standard for microarray data validation. Despite the kinetic information generated by real-time PCR, most popular analysis methods assume constant amplification efficiency among samples, introducing strong biases when amplification efficiencies are not the same. RESULTS: We present here a new mathematical model based on the classic exponential description of the PCR, but modeling amplification efficiency as a sigmoidal function of the product yield. The model was validated with experimental results and used for the development of a new method for real-time PCR data analysis. This model based method for real-time PCR data analysis showed the best accuracy and precision compared with previous methods when used for quantification of in-silico generated and experimental real-time PCR results. Moreover, the method is suitable for the analyses of samples with similar or dissimilar amplification efficiency. CONCLUSION: The presented method showed the best accuracy and precision. Moreover, it does not depend on calibration curves, making it ideal for fully automated high-throughput applications.