Cargando…

The integration window for shape cues is a function of ambient illumination

Minimal discrete shape cues, i.e., dots that marked positions on the outer boundary of namable objects, were divided into two subsets, which were shown very quickly with a variable delay between subsets. Recognition of a given object required integration of the information provided by the two subset...

Descripción completa

Detalles Bibliográficos
Autor principal: Greene, Ernest
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838908/
https://www.ncbi.nlm.nih.gov/pubmed/17359541
http://dx.doi.org/10.1186/1744-9081-3-15
Descripción
Sumario:Minimal discrete shape cues, i.e., dots that marked positions on the outer boundary of namable objects, were divided into two subsets, which were shown very quickly with a variable delay between subsets. Recognition of a given object required integration of the information provided by the two subsets, and previous research had found that recognition declined as the delay between subsets was increased. The present experiment found the decline in recognition to be linear for each of several levels of ambient illumination, dropping rapidly under photopic test conditions, and with the slope being progressively less steep with transition into the scotopic range. The change in the duration of information persistence may be related to the density of information that is provided under various lighting conditions, and a requirement that the information be buffered against noise or "packaged" to accommodate successive saccades.