Cargando…

Tic62: a protein family from metabolism to protein translocation

BACKGROUND: The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a re...

Descripción completa

Detalles Bibliográficos
Autores principales: Balsera, Mónica, Stengel, Anna, Soll, Jürgen, Bölter, Bettina
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847441/
https://www.ncbi.nlm.nih.gov/pubmed/17374152
http://dx.doi.org/10.1186/1471-2148-7-43
_version_ 1782132889210585088
author Balsera, Mónica
Stengel, Anna
Soll, Jürgen
Bölter, Bettina
author_facet Balsera, Mónica
Stengel, Anna
Soll, Jürgen
Bölter, Bettina
author_sort Balsera, Mónica
collection PubMed
description BACKGROUND: The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62. RESULTS: Whereas the N-terminal module of Tic62 is highly conserved among all oxyphototrophs, the C-terminal region (FNR-binding module) is only found in vascular plants. Phylogenetic analyses classify four Tic62-NAD(P)-related protein subfamilies in land plants, closely related to members from cyanobacteria and green sulphur bacteria. Although most of the Tic62-NAD(P)-related eukaryotic proteins are localized in the chloroplast, one subgroup consists of proteins without a predicted transit peptide. The N-terminal module of Tic62 contains the structurally conserved Rossman fold and probably belongs to the extended family of short-chain dehydrogenases-reductases. Key residues involved in NADP-binding and residues that may attach the protein to the inner envelope membrane of chloroplasts or to the Tic complex are proposed. CONCLUSION: The Tic62-NAD(P)-related proteins are of ancient origin since they are not only found in cyanobacteria but also in green sulphur bacteria. The FNR-binding module at the C-terminal region of the Tic62 proteins is probably a recent acquisition in vascular plants, with no sequence similarity to any other known motifs. The presence of the FNR-binding domain in vascular plants might be essential for the function of the protein as a Tic component and/or for its regulation.
format Text
id pubmed-1847441
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-18474412007-04-03 Tic62: a protein family from metabolism to protein translocation Balsera, Mónica Stengel, Anna Soll, Jürgen Bölter, Bettina BMC Evol Biol Research Article BACKGROUND: The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62. RESULTS: Whereas the N-terminal module of Tic62 is highly conserved among all oxyphototrophs, the C-terminal region (FNR-binding module) is only found in vascular plants. Phylogenetic analyses classify four Tic62-NAD(P)-related protein subfamilies in land plants, closely related to members from cyanobacteria and green sulphur bacteria. Although most of the Tic62-NAD(P)-related eukaryotic proteins are localized in the chloroplast, one subgroup consists of proteins without a predicted transit peptide. The N-terminal module of Tic62 contains the structurally conserved Rossman fold and probably belongs to the extended family of short-chain dehydrogenases-reductases. Key residues involved in NADP-binding and residues that may attach the protein to the inner envelope membrane of chloroplasts or to the Tic complex are proposed. CONCLUSION: The Tic62-NAD(P)-related proteins are of ancient origin since they are not only found in cyanobacteria but also in green sulphur bacteria. The FNR-binding module at the C-terminal region of the Tic62 proteins is probably a recent acquisition in vascular plants, with no sequence similarity to any other known motifs. The presence of the FNR-binding domain in vascular plants might be essential for the function of the protein as a Tic component and/or for its regulation. BioMed Central 2007-03-20 /pmc/articles/PMC1847441/ /pubmed/17374152 http://dx.doi.org/10.1186/1471-2148-7-43 Text en Copyright © 2007 Balsera et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Balsera, Mónica
Stengel, Anna
Soll, Jürgen
Bölter, Bettina
Tic62: a protein family from metabolism to protein translocation
title Tic62: a protein family from metabolism to protein translocation
title_full Tic62: a protein family from metabolism to protein translocation
title_fullStr Tic62: a protein family from metabolism to protein translocation
title_full_unstemmed Tic62: a protein family from metabolism to protein translocation
title_short Tic62: a protein family from metabolism to protein translocation
title_sort tic62: a protein family from metabolism to protein translocation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847441/
https://www.ncbi.nlm.nih.gov/pubmed/17374152
http://dx.doi.org/10.1186/1471-2148-7-43
work_keys_str_mv AT balseramonica tic62aproteinfamilyfrommetabolismtoproteintranslocation
AT stengelanna tic62aproteinfamilyfrommetabolismtoproteintranslocation
AT solljurgen tic62aproteinfamilyfrommetabolismtoproteintranslocation
AT bolterbettina tic62aproteinfamilyfrommetabolismtoproteintranslocation