Cargando…
Predicting protein function by machine learning on amino acid sequences – a critical evaluation
BACKGROUND: Predicting the function of newly discovered proteins by simply inspecting their amino acid sequence is one of the major challenges of post-genomic computational biology, especially when done without recourse to experimentation or homology information. Machine learning classifiers are abl...
Autores principales: | Al-Shahib, Ali, Breitling, Rainer, Gilbert, David R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847686/ https://www.ncbi.nlm.nih.gov/pubmed/17374164 http://dx.doi.org/10.1186/1471-2164-8-78 |
Ejemplares similares
-
Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
por: You, Zhu-Hong, et al.
Publicado: (2013) -
Machine learning integration for predicting the effect of single amino acid substitutions on protein stability
por: Özen, Ayşegül, et al.
Publicado: (2009) -
snp-search: simple processing, manipulation and searching of SNPs from high-throughput sequencing
por: Al-Shahib, Ali, et al.
Publicado: (2013) -
Predicting protein disorder by analyzing amino acid sequence
por: Yang, Jack Y, et al.
Publicado: (2008) -
PPVED: A machine learning tool for predicting the effect of single amino acid substitution on protein function in plants
por: Gou, Xiangjian, et al.
Publicado: (2022)