Cargando…
Fast automated cell phenotype image classification
BACKGROUND: The genomic revolution has led to rapid growth in sequencing of genes and proteins, and attention is now turning to the function of the encoded proteins. In this respect, microscope imaging of a protein's sub-cellular localisation is proving invaluable, and recent advances in automa...
Autores principales: | Hamilton, Nicholas A, Pantelic, Radosav S, Hanson, Kelly, Teasdale, Rohan D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847687/ https://www.ncbi.nlm.nih.gov/pubmed/17394669 http://dx.doi.org/10.1186/1471-2105-8-110 |
Ejemplares similares
-
Visualizing and clustering high throughput sub-cellular localization imaging
por: Hamilton, Nicholas A, et al.
Publicado: (2008) -
Statistical and visual differentiation of subcellular imaging
por: Hamilton, Nicholas A, et al.
Publicado: (2009) -
An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping
por: Yu, Kang, et al.
Publicado: (2017) -
A two-step registration-classification approach to automated segmentation of multimodal images for high-throughput greenhouse plant phenotyping
por: Henke, Michael, et al.
Publicado: (2020) -
Fast automated yeast cell counting algorithm using bright-field and fluorescence microscopic images
por: Hong, Dongpyo, et al.
Publicado: (2013)