Cargando…
MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes
BACKGROUND: Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algo...
Autores principales: | Zhu, Huaiqiu, Hu, Gang-Qing, Yang, Yi-Fan, Wang, Jin, She, Zhen-Su |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847833/ https://www.ncbi.nlm.nih.gov/pubmed/17367537 http://dx.doi.org/10.1186/1471-2105-8-97 |
Ejemplares similares
-
Computational evaluation of TIS annotation for prokaryotic genomes
por: Hu, Gang-Qing, et al.
Publicado: (2008) -
ProTISA: a comprehensive resource for translation initiation site annotation in prokaryotic genomes
por: Hu, Gang-Qing, et al.
Publicado: (2008) -
MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning
por: Lin, Shenggeng, et al.
Publicado: (2022) -
Predicting enhancers in mammalian genomes using supervised hidden Markov models
por: Zehnder, Tobias, et al.
Publicado: (2019) -
In-silico predictive mutagenicity model generation using supervised learning approaches
por: Seal, Abhik, et al.
Publicado: (2012)