Cargando…

Using patient-collected clinical samples and sera to detect and quantify the severe acute respiratory syndrome coronavirus (SARS-CoV)

BACKGROUND: Severe acute respiratory syndrome (SARS) caused a large outbreak of pneumonia in Beijing, China, in 2003. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect and quantify SARS-CoV in 934 sera and self-collected throat washes and fecal samples from 271 patients wit...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Zhongping, Zhuang, Hui, Zhao, Chunhui, Dong, Qingming, Peng, Guoai, Dwyer, Dominic E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851004/
https://www.ncbi.nlm.nih.gov/pubmed/17386116
http://dx.doi.org/10.1186/1743-422X-4-32
Descripción
Sumario:BACKGROUND: Severe acute respiratory syndrome (SARS) caused a large outbreak of pneumonia in Beijing, China, in 2003. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect and quantify SARS-CoV in 934 sera and self-collected throat washes and fecal samples from 271 patients with laboratory-confirmed SARS managed at a single institution. RESULTS: SARS-CoV detection rates in sera were highest in the first 9 days of illness, whereas detection was highest in throat washes 5–14 days after onset of symptoms. The highest SARS-CoV RT-PCR rates (70.4–86.3%) and viral loads (log(10 )4.5–6.1) were seen in fecal samples collected 2–4 weeks after the onset of clinical illness. Fecal samples were frequently SARS-CoV RT-PCR positive beyond 40 days, and occasional sera still had SARS-CoV detected after 3 weeks of illness. CONCLUSION: In the context of an extensive outbreak with major pressure on hospital resources, patient self-collected samples are an alternative to nasopharyngeal aspirates for laboratory confirmation of SARS-CoV infection.