Cargando…

Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: a cross-sectional study

INTRODUCTION: Mammographic density is one of the strongest risk factors for breast cancer and is believed to represent epithelial and stromal proliferation. Because of the high heritability of breast density, and the role of the insulin-like growth factor (IGF) pathway in cellular proliferation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamimi, Rulla M, Cox, David G, Kraft, Peter, Pollak, Michael N, Haiman, Christopher A, Cheng, Iona, Freedman, Matthew L, Hankinson, Susan E, Hunter, David J, Colditz, Graham A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851377/
https://www.ncbi.nlm.nih.gov/pubmed/17300730
http://dx.doi.org/10.1186/bcr1655
Descripción
Sumario:INTRODUCTION: Mammographic density is one of the strongest risk factors for breast cancer and is believed to represent epithelial and stromal proliferation. Because of the high heritability of breast density, and the role of the insulin-like growth factor (IGF) pathway in cellular proliferation and breast development, we examined the association between common genetic variation in this pathway and mammographic density. METHODS: We conducted a cross-sectional analysis among controls (n = 1,121) who were between the ages of 42 and 78 years at mammography, from a breast cancer case-control study nested within the Nurses' Health Study cohort. At the time of mammography, 204 women were premenopausal and 917 were postmenopausal. We genotyped 29 haplotype-tagging SNPs demonstrated to capture common genetic variation in IGF1, IGF binding protein (IGFBP)-1, and IGFBP-3. RESULTS: Common haplotype patterns in three of the four haplotype blocks spanning the gene encoding IGF1 were associated with mammographic density. Haplotype patterns in block 1 (p = 0.03), block 3 (p = 0.009), and block 4 (p = 0.007) were associated with mammographic density, whereas those in block 2 were not. None of the common haplotypes in the three haplotype blocks spanning the genes encoding IGFBP-1/IGFBP-3 were significantly associated with mammographic density. Two haplotype-tagging SNPs in IGF1, rs1520220 and rs2946834, showed a strong association with mammographic density. Those with the homozygous variant genotype for rs1520220 had a mean percentage mammographic density of 19.6% compared with those with the homozygous wild-type genotype, who had a mean percentage mammographic density of 27.9% (p for trend < 0.0001). Those that were homozygous variant for rs2946834 had a mean percentage mammographic density of 23.2% compared with those who were homozygous wild-type with a mean percentage mammographic density of 28.2% (p for trend = 0.0004). Permutation testing demonstrated that results as strong as these are unlikely to occur by chance (p = 0.0005). CONCLUSION: Common genetic variation in IGF1 is strongly associated with percentage mammographic density.