Cargando…
Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations
To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes interact with one another, and with genetic and environmental factors, to determine clinical end points or disease phenotypes. Bayesian networks provide a convenient framework for extrac...
Autores principales: | Zhu, Jun, Wiener, Matthew C, Zhang, Chunsheng, Fridman, Arthur, Minch, Eric, Lum, Pek Y, Sachs, Jeffrey R, Schadt, Eric E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851982/ https://www.ncbi.nlm.nih.gov/pubmed/17432931 http://dx.doi.org/10.1371/journal.pcbi.0030069 |
Ejemplares similares
-
Inferring causal genomic alterations in breast cancer using gene expression data
por: Tran, Linh M, et al.
Publicado: (2011) -
Disentangling molecular relationships with a causal inference test
por: Millstein, Joshua, et al.
Publicado: (2009) -
Reconstructing CNV genotypes using segregation analysis: combining pedigree information with CNV assay
por: Henshall, John M, et al.
Publicado: (2010) -
Compulsory Segregation of Consumptives: Powers of Health Authorities
Publicado: (1919) -
Validation of Candidate Causal Genes for Abdominal Obesity Which Affect Shared Metabolic Pathways and Networks
por: Yang, Xia, et al.
Publicado: (2009)