Cargando…
Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts
BACKGROUND: The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ) of tandem genes and are h...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852091/ https://www.ncbi.nlm.nih.gov/pubmed/17394664 http://dx.doi.org/10.1186/1471-2148-7-49 |
_version_ | 1782133007069478912 |
---|---|
author | Yu, Wei-Ping Yew, Kenneth Rajasegaran, Vikneswari Venkatesh, Byrappa |
author_facet | Yu, Wei-Ping Yew, Kenneth Rajasegaran, Vikneswari Venkatesh, Byrappa |
author_sort | Yu, Wei-Ping |
collection | PubMed |
description | BACKGROUND: The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ) of tandem genes and are hypothesized to provide a molecular code for specifying the remarkably-diverse neural connections in the central nervous system. Like mammals, the coelacanth, a lobe-finned fish, contains a single protocadherin locus, also arranged into α, β and γ clusters. Zebrafish, however, possesses two protocadherin loci that contain more than twice the number of genes as the coelacanth, but arranged only into α and γ clusters. To gain further insight into the evolutionary history of protocadherin clusters, we have sequenced and analyzed protocadherin clusters from the compact genome of the pufferfish, Fugu rubripes. RESULTS: Fugu contains two unlinked protocadherin loci, Pcdh1 and Pcdh2, that collectively consist of at least 77 genes. The fugu Pcdh1 locus has been subject to extensive degeneration, resulting in the complete loss of Pcdh1γ cluster. The fugu Pcdh genes have undergone lineage-specific regional gene conversion processes that have resulted in a remarkable regional sequence homogenization among paralogs in the same subcluster. Phylogenetic analyses show that most protocadherin genes are orthologous between fugu and zebrafish either individually or as paralog groups. Based on the inferred phylogenetic relationships of fugu and zebrafish genes, we have reconstructed the evolutionary history of protocadherin clusters in the teleost fish lineage. CONCLUSION: Our results demonstrate the exceptional evolutionary dynamism of protocadherin genes in vertebrates in general, and in teleost fishes in particular. Besides the 'fish-specific' whole genome duplication, the evolution of protocadherin genes in teleost fishes is influenced by lineage-specific gene losses, tandem gene duplications and regional sequence homogenization. The dynamic protocadherin clusters might have led to the diversification of neural circuitry among teleosts, and contributed to the behavioral and physiological diversity of teleosts. |
format | Text |
id | pubmed-1852091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18520912007-04-14 Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts Yu, Wei-Ping Yew, Kenneth Rajasegaran, Vikneswari Venkatesh, Byrappa BMC Evol Biol Research Article BACKGROUND: The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ) of tandem genes and are hypothesized to provide a molecular code for specifying the remarkably-diverse neural connections in the central nervous system. Like mammals, the coelacanth, a lobe-finned fish, contains a single protocadherin locus, also arranged into α, β and γ clusters. Zebrafish, however, possesses two protocadherin loci that contain more than twice the number of genes as the coelacanth, but arranged only into α and γ clusters. To gain further insight into the evolutionary history of protocadherin clusters, we have sequenced and analyzed protocadherin clusters from the compact genome of the pufferfish, Fugu rubripes. RESULTS: Fugu contains two unlinked protocadherin loci, Pcdh1 and Pcdh2, that collectively consist of at least 77 genes. The fugu Pcdh1 locus has been subject to extensive degeneration, resulting in the complete loss of Pcdh1γ cluster. The fugu Pcdh genes have undergone lineage-specific regional gene conversion processes that have resulted in a remarkable regional sequence homogenization among paralogs in the same subcluster. Phylogenetic analyses show that most protocadherin genes are orthologous between fugu and zebrafish either individually or as paralog groups. Based on the inferred phylogenetic relationships of fugu and zebrafish genes, we have reconstructed the evolutionary history of protocadherin clusters in the teleost fish lineage. CONCLUSION: Our results demonstrate the exceptional evolutionary dynamism of protocadherin genes in vertebrates in general, and in teleost fishes in particular. Besides the 'fish-specific' whole genome duplication, the evolution of protocadherin genes in teleost fishes is influenced by lineage-specific gene losses, tandem gene duplications and regional sequence homogenization. The dynamic protocadherin clusters might have led to the diversification of neural circuitry among teleosts, and contributed to the behavioral and physiological diversity of teleosts. BioMed Central 2007-03-30 /pmc/articles/PMC1852091/ /pubmed/17394664 http://dx.doi.org/10.1186/1471-2148-7-49 Text en Copyright © 2007 Yu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yu, Wei-Ping Yew, Kenneth Rajasegaran, Vikneswari Venkatesh, Byrappa Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title | Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title_full | Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title_fullStr | Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title_full_unstemmed | Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title_short | Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
title_sort | sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852091/ https://www.ncbi.nlm.nih.gov/pubmed/17394664 http://dx.doi.org/10.1186/1471-2148-7-49 |
work_keys_str_mv | AT yuweiping sequencingandcomparativeanalysisoffuguprotocadherinclustersrevealdiversityofprotocadheringenesamongteleosts AT yewkenneth sequencingandcomparativeanalysisoffuguprotocadherinclustersrevealdiversityofprotocadheringenesamongteleosts AT rajasegaranvikneswari sequencingandcomparativeanalysisoffuguprotocadherinclustersrevealdiversityofprotocadheringenesamongteleosts AT venkateshbyrappa sequencingandcomparativeanalysisoffuguprotocadherinclustersrevealdiversityofprotocadheringenesamongteleosts |