Cargando…
HMM-ModE – Improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences
BACKGROUND: Profile Hidden Markov Models (HMM) are statistical representations of protein families derived from patterns of sequence conservation in multiple alignments and have been used in identifying remote homologues with considerable success. These conservation patterns arise from fold specific...
Autores principales: | Srivastava, Prashant K, Desai, Dhwani K, Nandi, Soumyadeep, Lynn, Andrew M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852395/ https://www.ncbi.nlm.nih.gov/pubmed/17389042 http://dx.doi.org/10.1186/1471-2105-8-104 |
Ejemplares similares
-
ModEnzA: Accurate Identification of Metabolic Enzymes Using Function Specific Profile HMMs with Optimised Discrimination Threshold and Modified Emission Probabilities
por: Desai, Dhwani K., et al.
Publicado: (2011) -
HMM-ModE: implementation, benchmarking and validation with HMMER3
por: Sinha, Swati, et al.
Publicado: (2014) -
Hidden Markov model speed heuristic and iterative HMM search procedure
por: Johnson, L Steven, et al.
Publicado: (2010) -
LuxHMM: DNA methylation analysis with genome segmentation via hidden Markov model
por: Malonzo, Maia H., et al.
Publicado: (2023) -
FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus
por: Prestat, Emmanuel, et al.
Publicado: (2014)