Cargando…

Cyclooxygenase-2 Induction by Arsenite through the IKKβ/NFκB Pathway Exerts an Antiapoptotic Effect in Mouse Epidermal Cl41 cells

BACKGROUND: Arsenic contamination has become a major public health concern worldwide. Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer. However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. OBJECTIVES: In the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Weiming, Zhang, Dongyun, Ma, Qian, Li, Jingxia, Huang, Chuanshu
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852668/
https://www.ncbi.nlm.nih.gov/pubmed/17450217
http://dx.doi.org/10.1289/ehp.9588
Descripción
Sumario:BACKGROUND: Arsenic contamination has become a major public health concern worldwide. Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer. However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. OBJECTIVES: In the present study we evaluated cyclooxygenase-2 (COX-2) expression, the signaling pathways leading to COX-2 induction, and its antiapoptotic function in the response to arsenite exposure in mouse epidermal JB6 Cl41 cells. METHODS: We used the luciferase reporter assay and Western blots to determine COX-2 induction by arsenite. We utilized dominant negative mutant, genetic knockout, gene knockdown, and gene overexpression approaches to elucidate the signaling pathway involved in COX-2 induction and its protective effect on cell apoptosis. RESULTS: The induction of COX-2 by arsenite was inhibited in Cl41 cells transfected with IKKβ-KM, a dominant mutant inhibitor of kβ (Ikβ) kinase (IKKβ), and in IKKβ-knockout (IKKβ(−/−)) mouse embryonic fibroblasts (MEFs). IKKβ/nuclear factor κB (NFκB) pathway-mediated COX-2 induction exerted an antiapoptotic effect on the cells exposed to arsenite because cell apoptosis was significantly enhanced in the Cl41 cells transfected with IKKβ-KM or COX-2 small interference RNA (siCOX-2). In addition, IKKβ(−/−) MEFs stably transfected with COX-2 showed more resistance to arsenite-induced apoptosis compared with the same control vector–transfected cells. CONCLUSIONS: These results demonstrate that arsenite exposure can induce COX-2 expression through the IKKβ/NFκB pathway, which thereby exerts an antiapoptotic effect in response to arsenite. In light of the importance of apoptosis evasion during carcinogenesis, we anticipate that COX-2 induction may be at least partially responsible for the carcinogenic effect of arsenite on skin.