Cargando…

Culture-independent analysis of bacterial diversity in a child-care facility

BACKGROUND: Child-care facilities appear to provide daily opportunities for exposure and transmission of bacteria and viruses. However, almost nothing is known about the diversity of microbial contamination in daycare facilities or its public health implications. Recent culture-independent molecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Lesley, Tin, Sara, Kelley, Scott T
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853100/
https://www.ncbi.nlm.nih.gov/pubmed/17411442
http://dx.doi.org/10.1186/1471-2180-7-27
_version_ 1782133107194855424
author Lee, Lesley
Tin, Sara
Kelley, Scott T
author_facet Lee, Lesley
Tin, Sara
Kelley, Scott T
author_sort Lee, Lesley
collection PubMed
description BACKGROUND: Child-care facilities appear to provide daily opportunities for exposure and transmission of bacteria and viruses. However, almost nothing is known about the diversity of microbial contamination in daycare facilities or its public health implications. Recent culture-independent molecular studies of bacterial diversity in indoor environments have revealed an astonishing diversity of microorganisms, including opportunistic pathogens and many uncultured bacteria. In this study, we used culture and culture-independent methods to determine the viability and diversity of bacteria in a child-care center over a six-month period. RESULTS: We sampled surface contamination on toys and furniture using sterile cotton swabs in four daycare classrooms. Bacteria were isolated on nutrient and blood agar plates, and 16S rRNA gene sequences were obtained from unique (one of a kind) colony morphologies for species identification. We also extracted DNA directly from nine representative swab samples taken over the course of the study from both toy and furniture surfaces, and used "universal" 16S rRNA gene bacterial primers to create PCR-based clone libraries. The rRNA gene clones were sequenced, and the sequences were compared with related sequences in GenBank and subjected to phylogenetic analyses to determine their evolutionary relationships. Culturing methods identified viable bacteria on all toys and furniture surfaces sampled in the study. Bacillus spp. were the most commonly cultured bacteria, followed by Staphylococcus spp., and Microbacterium spp. Culture-independent methods based on 16S rRNA gene sequencing, on the other hand, revealed an entirely new dimension of microbial diversity, including an estimated 190 bacterial species from 15 bacterial divisions. Sequence comparisons and phylogenetic analyses determined that the clone libraries were dominated by a diverse set of sequences related to Pseudomonas spp., as well as uncultured bacteria originally identified on human vaginal epithelium. Other sequences were related to uncultured bacteria from wastewater sludge, and many human-associated bacteria including a number of pathogens and opportunistic pathogens. Our results suggest that the child-care facility provided an excellent habitat for slime-producing Pseudomonads, and that diaper changing contributed significantly to the bacterial contamination. CONCLUSION: The combination of culture and culture-independent methods provided powerful means for determining both viability and diversity of bacteria in child-care facilities. Our results provided insight into the source of contamination and suggested ways in which sanitation might be improved. Although our study identified a remarkable array of microbial diversity present in a single daycare, it also revealed just how little we comprehend the true extent of microbial diversity in daycare centers or other indoor environments.
format Text
id pubmed-1853100
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-18531002007-04-20 Culture-independent analysis of bacterial diversity in a child-care facility Lee, Lesley Tin, Sara Kelley, Scott T BMC Microbiol Research Article BACKGROUND: Child-care facilities appear to provide daily opportunities for exposure and transmission of bacteria and viruses. However, almost nothing is known about the diversity of microbial contamination in daycare facilities or its public health implications. Recent culture-independent molecular studies of bacterial diversity in indoor environments have revealed an astonishing diversity of microorganisms, including opportunistic pathogens and many uncultured bacteria. In this study, we used culture and culture-independent methods to determine the viability and diversity of bacteria in a child-care center over a six-month period. RESULTS: We sampled surface contamination on toys and furniture using sterile cotton swabs in four daycare classrooms. Bacteria were isolated on nutrient and blood agar plates, and 16S rRNA gene sequences were obtained from unique (one of a kind) colony morphologies for species identification. We also extracted DNA directly from nine representative swab samples taken over the course of the study from both toy and furniture surfaces, and used "universal" 16S rRNA gene bacterial primers to create PCR-based clone libraries. The rRNA gene clones were sequenced, and the sequences were compared with related sequences in GenBank and subjected to phylogenetic analyses to determine their evolutionary relationships. Culturing methods identified viable bacteria on all toys and furniture surfaces sampled in the study. Bacillus spp. were the most commonly cultured bacteria, followed by Staphylococcus spp., and Microbacterium spp. Culture-independent methods based on 16S rRNA gene sequencing, on the other hand, revealed an entirely new dimension of microbial diversity, including an estimated 190 bacterial species from 15 bacterial divisions. Sequence comparisons and phylogenetic analyses determined that the clone libraries were dominated by a diverse set of sequences related to Pseudomonas spp., as well as uncultured bacteria originally identified on human vaginal epithelium. Other sequences were related to uncultured bacteria from wastewater sludge, and many human-associated bacteria including a number of pathogens and opportunistic pathogens. Our results suggest that the child-care facility provided an excellent habitat for slime-producing Pseudomonads, and that diaper changing contributed significantly to the bacterial contamination. CONCLUSION: The combination of culture and culture-independent methods provided powerful means for determining both viability and diversity of bacteria in child-care facilities. Our results provided insight into the source of contamination and suggested ways in which sanitation might be improved. Although our study identified a remarkable array of microbial diversity present in a single daycare, it also revealed just how little we comprehend the true extent of microbial diversity in daycare centers or other indoor environments. BioMed Central 2007-04-05 /pmc/articles/PMC1853100/ /pubmed/17411442 http://dx.doi.org/10.1186/1471-2180-7-27 Text en Copyright ©2007 Lee et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lee, Lesley
Tin, Sara
Kelley, Scott T
Culture-independent analysis of bacterial diversity in a child-care facility
title Culture-independent analysis of bacterial diversity in a child-care facility
title_full Culture-independent analysis of bacterial diversity in a child-care facility
title_fullStr Culture-independent analysis of bacterial diversity in a child-care facility
title_full_unstemmed Culture-independent analysis of bacterial diversity in a child-care facility
title_short Culture-independent analysis of bacterial diversity in a child-care facility
title_sort culture-independent analysis of bacterial diversity in a child-care facility
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853100/
https://www.ncbi.nlm.nih.gov/pubmed/17411442
http://dx.doi.org/10.1186/1471-2180-7-27
work_keys_str_mv AT leelesley cultureindependentanalysisofbacterialdiversityinachildcarefacility
AT tinsara cultureindependentanalysisofbacterialdiversityinachildcarefacility
AT kelleyscottt cultureindependentanalysisofbacterialdiversityinachildcarefacility