Cargando…

Molecular and cellular characterization of ABCG2 in the prostate

BACKGROUND: Identification and characterization of the prostate stem cell is important for understanding normal prostate development and carcinogenesis. The flow cytometry-based side population (SP) technique has been developed to isolate putative adult stem cells in several human tissue types inclu...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascal, Laura E, Oudes, Asa J, Petersen, Timothy W, Goo, Young Ah, Walashek, Laura S, True, Lawrence D, Liu, Alvin Y
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853103/
https://www.ncbi.nlm.nih.gov/pubmed/17425799
http://dx.doi.org/10.1186/1471-2490-7-6
Descripción
Sumario:BACKGROUND: Identification and characterization of the prostate stem cell is important for understanding normal prostate development and carcinogenesis. The flow cytometry-based side population (SP) technique has been developed to isolate putative adult stem cells in several human tissue types including the prostate. This phenotype is mainly mediated by the ATP-binding cassette membrane transporter ABCG2. METHODS: Immunolocalization of ABCG2 was performed on normal prostate tissue obtained from radical prostatectomies. Normal human prostate SP cells and ABCG2(+ )cells were isolated and gene expression was determined with DNA array analysis and RT-PCR. Endothelial cells were removed by pre-sorting with CD31. RESULTS: ABCG2 positive cells were localized to the prostate basal epithelium and endothelium. ABCG2(+ )cells in the basal epithelium constituted less than 1% of the total basal cell population. SP cells constituted 0.5–3% of the total epithelial fraction. The SP transcriptome was essentially the same as ABCG2(+ )and both populations expressed genes indicative of a stem cell phenotype, however, the cells also expressed many genes in common with endothelial cells. CONCLUSION: These results provide gene expression profiles for the prostate SP and ABCG2(+ )cells that will be critical for studying normal development and carcinogenesis, in particular as related to the cancer stem cell concept.