Cargando…

Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals

BACKGROUND: Determining the relative contribution of intrinsic and extrinsic factors to fluctuations in population size, trends and demographic composition is analytically complex. It is often only possible to examine the combined effects of these factors through measurements made over long periods,...

Descripción completa

Detalles Bibliográficos
Autores principales: de Little, Siobhan C, Bradshaw, Corey JA, McMahon, Clive R, Hindell, Mark A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855316/
https://www.ncbi.nlm.nih.gov/pubmed/17389038
http://dx.doi.org/10.1186/1472-6785-7-3
_version_ 1782133139561250816
author de Little, Siobhan C
Bradshaw, Corey JA
McMahon, Clive R
Hindell, Mark A
author_facet de Little, Siobhan C
Bradshaw, Corey JA
McMahon, Clive R
Hindell, Mark A
author_sort de Little, Siobhan C
collection PubMed
description BACKGROUND: Determining the relative contribution of intrinsic and extrinsic factors to fluctuations in population size, trends and demographic composition is analytically complex. It is often only possible to examine the combined effects of these factors through measurements made over long periods, spanning an array of population densities or levels of food availability. Using age-structured mark-recapture models and datasets spanning five decades (1950–1999), and two periods of differing relative population density, we estimated age-specific probabilities of survival and examined the combined effects of population density and environmental conditions on juvenile survival of southern elephant seals at Macquarie Island. RESULTS: First-year survival decreased with density during the period of highest population size, and survival increased during years when the Southern Oscillation Index (SOI) anomaly (deviation from a 50-year mean) during the mother's previous foraging trip to sea was positive (i.e., El Niño). However, when environmental stochasticity and density were considered together, the effect of density on first-year survival effectively disappeared. Ignoring density effects also leads to models placing too much emphasis on the environmental conditions prevailing during the naïve pup's first year at sea. CONCLUSION: Our analyses revealed that both the state of the environment and population density combine to modify juvenile survival, but that the degree to which these processes contributed to the variation observed was interactive and complex. This underlines the importance of evaluating the relative contribution of both the intrinsic and extrinsic factors that regulate animal populations because false conclusions regarding the importance of population regulation may be reached if they are examined in isolation.
format Text
id pubmed-1855316
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-18553162007-05-02 Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals de Little, Siobhan C Bradshaw, Corey JA McMahon, Clive R Hindell, Mark A BMC Ecol Research Article BACKGROUND: Determining the relative contribution of intrinsic and extrinsic factors to fluctuations in population size, trends and demographic composition is analytically complex. It is often only possible to examine the combined effects of these factors through measurements made over long periods, spanning an array of population densities or levels of food availability. Using age-structured mark-recapture models and datasets spanning five decades (1950–1999), and two periods of differing relative population density, we estimated age-specific probabilities of survival and examined the combined effects of population density and environmental conditions on juvenile survival of southern elephant seals at Macquarie Island. RESULTS: First-year survival decreased with density during the period of highest population size, and survival increased during years when the Southern Oscillation Index (SOI) anomaly (deviation from a 50-year mean) during the mother's previous foraging trip to sea was positive (i.e., El Niño). However, when environmental stochasticity and density were considered together, the effect of density on first-year survival effectively disappeared. Ignoring density effects also leads to models placing too much emphasis on the environmental conditions prevailing during the naïve pup's first year at sea. CONCLUSION: Our analyses revealed that both the state of the environment and population density combine to modify juvenile survival, but that the degree to which these processes contributed to the variation observed was interactive and complex. This underlines the importance of evaluating the relative contribution of both the intrinsic and extrinsic factors that regulate animal populations because false conclusions regarding the importance of population regulation may be reached if they are examined in isolation. BioMed Central 2007-03-27 /pmc/articles/PMC1855316/ /pubmed/17389038 http://dx.doi.org/10.1186/1472-6785-7-3 Text en Copyright © 2007 de Little et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
de Little, Siobhan C
Bradshaw, Corey JA
McMahon, Clive R
Hindell, Mark A
Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title_full Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title_fullStr Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title_full_unstemmed Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title_short Complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
title_sort complex interplay between intrinsic and extrinsic drivers of long-term survival trends in southern elephant seals
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855316/
https://www.ncbi.nlm.nih.gov/pubmed/17389038
http://dx.doi.org/10.1186/1472-6785-7-3
work_keys_str_mv AT delittlesiobhanc complexinterplaybetweenintrinsicandextrinsicdriversoflongtermsurvivaltrendsinsouthernelephantseals
AT bradshawcoreyja complexinterplaybetweenintrinsicandextrinsicdriversoflongtermsurvivaltrendsinsouthernelephantseals
AT mcmahoncliver complexinterplaybetweenintrinsicandextrinsicdriversoflongtermsurvivaltrendsinsouthernelephantseals
AT hindellmarka complexinterplaybetweenintrinsicandextrinsicdriversoflongtermsurvivaltrendsinsouthernelephantseals