Cargando…

Coping with Viral Diversity in HIV Vaccine Design

The ability of human immunodeficiency virus type 1 (HIV-1) to develop high levels of genetic diversity, and thereby acquire mutations to escape immune pressures, contributes to the difficulties in producing a vaccine. Possibly no single HIV-1 sequence can induce sufficiently broad immunity to protec...

Descripción completa

Detalles Bibliográficos
Autores principales: Nickle, David C, Rolland, Morgane, Jensen, Mark A, Pond, Sergei L. Kosakovsky, Deng, Wenjie, Seligman, Mark, Heckerman, David, Mullins, James I, Jojic, Nebojsa
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1857809/
https://www.ncbi.nlm.nih.gov/pubmed/17465674
http://dx.doi.org/10.1371/journal.pcbi.0030075
Descripción
Sumario:The ability of human immunodeficiency virus type 1 (HIV-1) to develop high levels of genetic diversity, and thereby acquire mutations to escape immune pressures, contributes to the difficulties in producing a vaccine. Possibly no single HIV-1 sequence can induce sufficiently broad immunity to protect against a wide variety of infectious strains, or block mutational escape pathways available to the virus after infection. The authors describe the generation of HIV-1 immunogens that minimizes the phylogenetic distance of viral strains throughout the known viral population (the center of tree [COT]) and then extend the COT immunogen by addition of a composite sequence that includes high-frequency variable sites preserved in their native contexts. The resulting COT(+) antigens compress the variation found in many independent HIV-1 isolates into lengths suitable for vaccine immunogens. It is possible to capture 62% of the variation found in the Nef protein and 82% of the variation in the Gag protein into immunogens of three gene lengths. The authors put forward immunogen designs that maximize representation of the diverse antigenic features present in a spectrum of HIV-1 strains. These immunogens should elicit immune responses against high-frequency viral strains as well as against most mutant forms of the virus.