Cargando…
Evidence that p53-Mediated Cell-Cycle-Arrest Inhibits Chemotherapeutic Treatment of Ovarian Carcinomas
Gene expression profiles of malignant tumors surgically removed from ovarian cancer patients pre-treated with chemotherapy (neo-adjuvant) prior to surgery group into two distinct clusters. One group clusters with carcinomas from patients not pre-treated with chemotherapy prior to surgery (C-L), whil...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1859837/ https://www.ncbi.nlm.nih.gov/pubmed/17505532 http://dx.doi.org/10.1371/journal.pone.0000441 |
Sumario: | Gene expression profiles of malignant tumors surgically removed from ovarian cancer patients pre-treated with chemotherapy (neo-adjuvant) prior to surgery group into two distinct clusters. One group clusters with carcinomas from patients not pre-treated with chemotherapy prior to surgery (C-L), while the other clusters with non-malignant adenomas (A-L). We show here that although the C-L cluster is preferentially associated with p53 loss-of-function (LOF) mutations, the C-L cluster cancer patients display a more favorable clinical response to chemotherapy as evidenced by enhanced long-term survivorships. Our results support a model whereby p53 mediated cell-cycle-arrest/DNA repair serves as a barrier to optimal chemotherapeutic treatment of ovarian and perhaps other carcinomas and suggest that inhibition of p53 during chemotherapy may enhance clinical outcome. |
---|