Cargando…

Haplotype Structure of FSHB, the Beta-Subunit Gene for Fertility-Associated Follicle-Stimulating Hormone: Possible Influence of Balancing Selection

Follicle-stimulating hormone (FSH) is essential for human reproduction. The unique functions of this hormone are provided by the FSH receptor-binding beta-subunit encoded by the FSHB gene. Resequencing and genotyping of FSHB in three European, two Asian and one African population, as well as in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Grigorova, M, Rull, K, Laan, M
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1859982/
https://www.ncbi.nlm.nih.gov/pubmed/17227474
http://dx.doi.org/10.1111/j.1469-1809.2006.00299.x
Descripción
Sumario:Follicle-stimulating hormone (FSH) is essential for human reproduction. The unique functions of this hormone are provided by the FSH receptor-binding beta-subunit encoded by the FSHB gene. Resequencing and genotyping of FSHB in three European, two Asian and one African population, as well as in the great apes (chimpanzee, gorilla, orangutan), revealed low diversity and significant excess of polymorphisms with intermediate frequency alleles. Statistical tests for FSHB showed deviations from neutrality in all populations suggesting a possible effect of balancing selection. Two core haplotypes were identified (carried by 76-96.6% of each population's sample), the sequences of which are clearly separated from each other. As fertility most directly affects an organism's fitness, the carriers of these haplotypes have apparently had more success in human history to contribute to the next generation. There is a preliminary observation suggesting that the second most frequent FSHB haplotype may be associated with rapid conception success in females. Interestingly, the same haplotype is related to an ancestral FSHB variant shared with the ancestor of the great apes. The determination of the functional consequence of the two core FSHB variants may have implications for understanding and regulating human fertility, as well as in assisting infertility treatments.