Cargando…
Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium
BACKGROUND: Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal patte...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1863432/ https://www.ncbi.nlm.nih.gov/pubmed/17442106 http://dx.doi.org/10.1186/1477-5751-6-5 |
_version_ | 1782133199539798016 |
---|---|
author | Simões, Pedro D Ramos, Teresa |
author_facet | Simões, Pedro D Ramos, Teresa |
author_sort | Simões, Pedro D |
collection | PubMed |
description | BACKGROUND: Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal pattern of differentiation (essentially neurons) and bone morphogenetic protein (BMP) or hexamethylenebisacetamide (HMBA) induces a more ventral (epidermal) pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2). RESULTS: Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. CONCLUSION: Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met. |
format | Text |
id | pubmed-1863432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18634322007-05-03 Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium Simões, Pedro D Ramos, Teresa J Negat Results Biomed Research BACKGROUND: Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal pattern of differentiation (essentially neurons) and bone morphogenetic protein (BMP) or hexamethylenebisacetamide (HMBA) induces a more ventral (epidermal) pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2). RESULTS: Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. CONCLUSION: Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met. BioMed Central 2007-04-18 /pmc/articles/PMC1863432/ /pubmed/17442106 http://dx.doi.org/10.1186/1477-5751-6-5 Text en Copyright © 2007 Simões and Ramos; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Simões, Pedro D Ramos, Teresa Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title | Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title_full | Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title_fullStr | Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title_full_unstemmed | Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title_short | Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium |
title_sort | human pluripotent embryonal carcinoma ntera2 cl.d1 cells maintain their typical morphology in an angiomyogenic medium |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1863432/ https://www.ncbi.nlm.nih.gov/pubmed/17442106 http://dx.doi.org/10.1186/1477-5751-6-5 |
work_keys_str_mv | AT simoespedrod humanpluripotentembryonalcarcinomantera2cld1cellsmaintaintheirtypicalmorphologyinanangiomyogenicmedium AT ramosteresa humanpluripotentembryonalcarcinomantera2cld1cellsmaintaintheirtypicalmorphologyinanangiomyogenicmedium |