Cargando…

Insights into Fanconi Anaemia from the structure of human FANCE

Fanconi Anaemia (FA) is a cancer predisposition disorder characterized by spontaneous chromosome breakage and high cellular sensitivity to genotoxic agents. In response to DNA damage, a multi-subunit assembly of FA proteins, the FA core complex, monoubiquitinates the downstream FANCD2 protein. The F...

Descripción completa

Detalles Bibliográficos
Autores principales: Nookala, Ravi K., Hussain, Shobbir, Pellegrini, Luca
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1865054/
https://www.ncbi.nlm.nih.gov/pubmed/17308347
http://dx.doi.org/10.1093/nar/gkm033
Descripción
Sumario:Fanconi Anaemia (FA) is a cancer predisposition disorder characterized by spontaneous chromosome breakage and high cellular sensitivity to genotoxic agents. In response to DNA damage, a multi-subunit assembly of FA proteins, the FA core complex, monoubiquitinates the downstream FANCD2 protein. The FANCE protein plays an essential role in the FA process of DNA repair as the FANCD2-binding component of the FA core complex. Here we report a crystallographic and biological study of human FANCE. The first structure of a FA protein reveals the presence of a repeated helical motif that provides a template for the structural rationalization of other proteins defective in Fanconi Anaemia. The portion of FANCE defined by our crystallographic analysis is sufficient for interaction with FANCD2, yielding structural information into the mode of FANCD2 recruitment to the FA core complex. Disease-associated mutations disrupt the FANCE–FANCD2 interaction, providing structural insight into the molecular mechanisms of FA pathogenesis.