Cargando…

HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation

Despite the high degree of HIV-1 protease and reverse transcriptase (RT) mutation in the setting of antiretroviral therapy, the spectrum of possible virus variants appears to be limited by patterns of amino acid covariation. We analyzed patterns of amino acid covariation in protease and RT sequences...

Descripción completa

Detalles Bibliográficos
Autores principales: Rhee, Soo-Yon, Liu, Tommy F, Holmes, Susan P, Shafer, Robert W
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866358/
https://www.ncbi.nlm.nih.gov/pubmed/17500586
http://dx.doi.org/10.1371/journal.pcbi.0030087
_version_ 1782133258878713856
author Rhee, Soo-Yon
Liu, Tommy F
Holmes, Susan P
Shafer, Robert W
author_facet Rhee, Soo-Yon
Liu, Tommy F
Holmes, Susan P
Shafer, Robert W
author_sort Rhee, Soo-Yon
collection PubMed
description Despite the high degree of HIV-1 protease and reverse transcriptase (RT) mutation in the setting of antiretroviral therapy, the spectrum of possible virus variants appears to be limited by patterns of amino acid covariation. We analyzed patterns of amino acid covariation in protease and RT sequences from more than 7,000 persons infected with HIV-1 subtype B viruses obtained from the Stanford HIV Drug Resistance Database (http://hivdb.stanford.edu). In addition, we examined the relationship between conditional probabilities associated with a pair of mutations and the order in which those mutations developed in viruses for which longitudinal sequence data were available. Patterns of RT covariation were dominated by the distinct clustering of Type I and Type II thymidine analog mutations and the Q151M-associated mutations. Patterns of protease covariation were dominated by the clustering of nelfinavir-associated mutations (D30N and N88D), two main groups of protease inhibitor (PI)–resistance mutations associated either with V82A or L90M, and a tight cluster of mutations associated with decreased susceptibility to amprenavir and the most recently approved PI darunavir. Different patterns of covariation were frequently observed for different mutations at the same position including the RT mutations T69D versus T69N, L74V versus L74I, V75I versus V75M, T215F versus T215Y, and K219Q/E versus K219N/R, and the protease mutations M46I versus M46L, I54V versus I54M/L, and N88D versus N88S. Sequence data from persons with correlated mutations in whom earlier sequences were available confirmed that the conditional probabilities associated with correlated mutation pairs could be used to predict the order in which the mutations were likely to have developed. Whereas accessory nucleoside RT inhibitor–resistance mutations nearly always follow primary nucleoside RT inhibitor–resistance mutations, accessory PI-resistance mutations often preceded primary PI-resistance mutations.
format Text
id pubmed-1866358
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-18663582007-05-11 HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation Rhee, Soo-Yon Liu, Tommy F Holmes, Susan P Shafer, Robert W PLoS Comput Biol Research Article Despite the high degree of HIV-1 protease and reverse transcriptase (RT) mutation in the setting of antiretroviral therapy, the spectrum of possible virus variants appears to be limited by patterns of amino acid covariation. We analyzed patterns of amino acid covariation in protease and RT sequences from more than 7,000 persons infected with HIV-1 subtype B viruses obtained from the Stanford HIV Drug Resistance Database (http://hivdb.stanford.edu). In addition, we examined the relationship between conditional probabilities associated with a pair of mutations and the order in which those mutations developed in viruses for which longitudinal sequence data were available. Patterns of RT covariation were dominated by the distinct clustering of Type I and Type II thymidine analog mutations and the Q151M-associated mutations. Patterns of protease covariation were dominated by the clustering of nelfinavir-associated mutations (D30N and N88D), two main groups of protease inhibitor (PI)–resistance mutations associated either with V82A or L90M, and a tight cluster of mutations associated with decreased susceptibility to amprenavir and the most recently approved PI darunavir. Different patterns of covariation were frequently observed for different mutations at the same position including the RT mutations T69D versus T69N, L74V versus L74I, V75I versus V75M, T215F versus T215Y, and K219Q/E versus K219N/R, and the protease mutations M46I versus M46L, I54V versus I54M/L, and N88D versus N88S. Sequence data from persons with correlated mutations in whom earlier sequences were available confirmed that the conditional probabilities associated with correlated mutation pairs could be used to predict the order in which the mutations were likely to have developed. Whereas accessory nucleoside RT inhibitor–resistance mutations nearly always follow primary nucleoside RT inhibitor–resistance mutations, accessory PI-resistance mutations often preceded primary PI-resistance mutations. Public Library of Science 2007-05 2007-05-11 /pmc/articles/PMC1866358/ /pubmed/17500586 http://dx.doi.org/10.1371/journal.pcbi.0030087 Text en © 2007 Rhee et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Rhee, Soo-Yon
Liu, Tommy F
Holmes, Susan P
Shafer, Robert W
HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title_full HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title_fullStr HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title_full_unstemmed HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title_short HIV-1 Subtype B Protease and Reverse Transcriptase Amino Acid Covariation
title_sort hiv-1 subtype b protease and reverse transcriptase amino acid covariation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866358/
https://www.ncbi.nlm.nih.gov/pubmed/17500586
http://dx.doi.org/10.1371/journal.pcbi.0030087
work_keys_str_mv AT rheesooyon hiv1subtypebproteaseandreversetranscriptaseaminoacidcovariation
AT liutommyf hiv1subtypebproteaseandreversetranscriptaseaminoacidcovariation
AT holmessusanp hiv1subtypebproteaseandreversetranscriptaseaminoacidcovariation
AT shaferrobertw hiv1subtypebproteaseandreversetranscriptaseaminoacidcovariation