Cargando…
Multiple imputation methods for longitudinal blood pressure measurements from the Framingham Heart Study
Missing data are a great concern in longitudinal studies, because few subjects will have complete data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially informative observations due to missing data can be inefficient or biased. To assess the extent of the...
Autores principales: | Kang, Terri, Kraft, Peter, Gauderman, W James, Thomas, Duncan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866479/ https://www.ncbi.nlm.nih.gov/pubmed/14975111 http://dx.doi.org/10.1186/1471-2156-4-S1-S43 |
Ejemplares similares
-
Multivariate variance-components analysis of longitudinal blood pressure measurements from the Framingham Heart Study
por: Kraft, Peter, et al.
Publicado: (2003) -
Multilevel modeling for the analysis of longitudinal blood pressure data in the Framingham Heart Study pedigrees
por: Briollais, Laurent, et al.
Publicado: (2003) -
Genome scan linkage results for longitudinal systolic blood pressure phenotypes in subjects from the Framingham Heart Study
por: James, Katherine, et al.
Publicado: (2003) -
Variance components linkage analysis for adjusted systolic blood pressure in the Framingham Heart Study
por: Byng, Martyn C, et al.
Publicado: (2003) -
Longitudinal variance-components analysis of the Framingham Heart Study data
por: Macgregor, Stuart, et al.
Publicado: (2003)