Cargando…
Identification of genes for complex disease using longitudinal phenotypes
Using the simulated data set from Genetic Analysis Workshop 13, we explored the advantages of using longitudinal data in genetic analyses. The weighted average of the longitudinal data for each of seven quantitative phenotypes were computed and analyzed. Genome screen results were then compared for...
Autores principales: | Pankratz, Nathan, Mukhopadhyay, Nitai, Huang, Shuguang, Foroud, Tatiana, Kirkwood, Sandra Close |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866495/ https://www.ncbi.nlm.nih.gov/pubmed/14975126 http://dx.doi.org/10.1186/1471-2156-4-S1-S58 |
Ejemplares similares
-
Standard linkage and association methods identify the mechanism of four susceptibility genes for a simulated complex disease
por: Pankratz, Nathan, et al.
Publicado: (2005) -
A two-stage classification approach identifies seven susceptibility genes for a simulated complex disease
por: Pankratz, Nathan
Publicado: (2007) -
Mapping genes with longitudinal phenotypes via Bayesian posterior probabilities
por: Musolf, Anthony, et al.
Publicado: (2014) -
Non-redundant summary scores applied to the North American Rheumatoid Arthritis Consortium dataset
por: Pankratz, Nathan D
Publicado: (2009) -
Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data
por: Li, Yongjin, et al.
Publicado: (2012)