Cargando…
Mapping complex traits using Random Forests
Random Forest is a prediction technique based on growing trees on bootstrap samples of data, in conjunction with a random selection of explanatory variables to define the best split at each node. In the case of a quantitative outcome, the tree predictor takes on a numerical value. We applied Random...
Autores principales: | Bureau, Alexandre, Dupuis, Josée, Hayward, Brooke, Falls, Kathleen, Van Eerdewegh, Paul |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866502/ https://www.ncbi.nlm.nih.gov/pubmed/14975132 http://dx.doi.org/10.1186/1471-2156-4-S1-S64 |
Ejemplares similares
-
Identification of polymorphisms explaining a linkage signal: application to the GAW14 simulated data
por: Chen, Ming-Huei, et al.
Publicado: (2005) -
Joint modeling of linkage and association using affected sib-pair data
por: Chen, Ming-Huei, et al.
Publicado: (2007) -
Screening large-scale association study data: exploiting interactions using random forests
por: Lunetta, Kathryn L, et al.
Publicado: (2004) -
Genome-wide association and linkage analysis of quantitative traits: comparison of likelihood-ratio test and conditional score statistic
por: Hendricks, Audrey E, et al.
Publicado: (2009) -
Approaches to mapping genetically correlated complex traits
por: George, Andrew W, et al.
Publicado: (2003)