Cargando…

Phenotypic, genetic, and genome-wide structure in the metabolic syndrome

BACKGROUND: Insulin resistance, obesity, dyslipidemia, and high blood pressure characterize the metabolic syndrome. In an effort to explore the utility of different multivariate methods of data reduction to better understand the genetic influences on the aggregation of metabolic syndrome phenotypes,...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, Lisa J, North, Kari E, Dyer, Tom, Blangero, John, Comuzzie, Anthony G, Williams, Jeff
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866536/
https://www.ncbi.nlm.nih.gov/pubmed/14975163
http://dx.doi.org/10.1186/1471-2156-4-S1-S95
Descripción
Sumario:BACKGROUND: Insulin resistance, obesity, dyslipidemia, and high blood pressure characterize the metabolic syndrome. In an effort to explore the utility of different multivariate methods of data reduction to better understand the genetic influences on the aggregation of metabolic syndrome phenotypes, we calculated phenotypic, genetic, and genome-wide LOD score correlation matrices using five traits (total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic blood pressure, and body mass index) from the Framingham Heart Study data set prepared for the Genetic Analysis Workshop 13, clinic visits 10 and 1 for the original and offspring cohorts, respectively. We next applied factor analysis to summarize the relationship between these phenotypes. RESULTS: Factors generated from the genetic correlation matrix explained the most variation. Factors extracted using the other matrices followed a different pattern and suggest distinct effects. CONCLUSIONS: Given these results, different methods of multivariate data reduction may provide unique clues on the clustering of this complex syndrome.