Cargando…
The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification
Linkage analysis based on identity-by-descent allele-sharing can be used to identify a chromosomal region harboring a quantitative trait locus (QTL), but lacks the resolution required for gene identification. Consequently, linkage disequilibrium (association) analysis is often employed for fine-mapp...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866688/ https://www.ncbi.nlm.nih.gov/pubmed/16451707 http://dx.doi.org/10.1186/1471-2156-6-S1-S91 |
_version_ | 1782133299765837824 |
---|---|
author | Havill, Lorena M Dyer, Thomas D Richardson, Dawn K Mahaney, Michael C Blangero, John |
author_facet | Havill, Lorena M Dyer, Thomas D Richardson, Dawn K Mahaney, Michael C Blangero, John |
author_sort | Havill, Lorena M |
collection | PubMed |
description | Linkage analysis based on identity-by-descent allele-sharing can be used to identify a chromosomal region harboring a quantitative trait locus (QTL), but lacks the resolution required for gene identification. Consequently, linkage disequilibrium (association) analysis is often employed for fine-mapping. Variance-components based combined linkage and association analysis for quantitative traits in sib pairs, in which association is modeled as a mean effect and linkage is modeled in the covariance structure has been extended to general pedigrees (quantitative transmission disequilibrium test, QTDT). The QTDT approach accommodates data not only from parents and siblings, but also from all available relatives. QTDT is also robust to population stratification. However, when population stratification is absent, it is possible to utilize even more information, namely the additional information contained in the founder genotypes. In this paper, we introduce a simple modification of the allelic transmission scoring method used in the QTDT that results in a more powerful test of linkage disequilibrium, but is only applicable in the absence of population stratification. This test, the quantitative trait linkage disequilibrium (QTLD) test, has been incorporated into a new procedure in the statistical genetics computer package SOLAR. We apply this procedure in a linkage/association analysis of an electrophysiological measurement previously shown to be related to alcoholism. We also demonstrate by simulation the increase in power obtained with the QTLD test, relative to the QTDT, when a true association exists between a marker and a QTL. |
format | Text |
id | pubmed-1866688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18666882007-05-11 The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification Havill, Lorena M Dyer, Thomas D Richardson, Dawn K Mahaney, Michael C Blangero, John BMC Genet Proceedings Linkage analysis based on identity-by-descent allele-sharing can be used to identify a chromosomal region harboring a quantitative trait locus (QTL), but lacks the resolution required for gene identification. Consequently, linkage disequilibrium (association) analysis is often employed for fine-mapping. Variance-components based combined linkage and association analysis for quantitative traits in sib pairs, in which association is modeled as a mean effect and linkage is modeled in the covariance structure has been extended to general pedigrees (quantitative transmission disequilibrium test, QTDT). The QTDT approach accommodates data not only from parents and siblings, but also from all available relatives. QTDT is also robust to population stratification. However, when population stratification is absent, it is possible to utilize even more information, namely the additional information contained in the founder genotypes. In this paper, we introduce a simple modification of the allelic transmission scoring method used in the QTDT that results in a more powerful test of linkage disequilibrium, but is only applicable in the absence of population stratification. This test, the quantitative trait linkage disequilibrium (QTLD) test, has been incorporated into a new procedure in the statistical genetics computer package SOLAR. We apply this procedure in a linkage/association analysis of an electrophysiological measurement previously shown to be related to alcoholism. We also demonstrate by simulation the increase in power obtained with the QTLD test, relative to the QTDT, when a true association exists between a marker and a QTL. BioMed Central 2005-12-30 /pmc/articles/PMC1866688/ /pubmed/16451707 http://dx.doi.org/10.1186/1471-2156-6-S1-S91 Text en Copyright © 2005 Havill et al; licensee BioMed Central Ltd http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Havill, Lorena M Dyer, Thomas D Richardson, Dawn K Mahaney, Michael C Blangero, John The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title | The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title_full | The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title_fullStr | The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title_full_unstemmed | The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title_short | The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
title_sort | quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866688/ https://www.ncbi.nlm.nih.gov/pubmed/16451707 http://dx.doi.org/10.1186/1471-2156-6-S1-S91 |
work_keys_str_mv | AT havilllorenam thequantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT dyerthomasd thequantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT richardsondawnk thequantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT mahaneymichaelc thequantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT blangerojohn thequantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT havilllorenam quantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT dyerthomasd quantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT richardsondawnk quantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT mahaneymichaelc quantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification AT blangerojohn quantitativetraitlinkagedisequilibriumtestamorepowerfulalternativetothequantitativetransmissiondisequilibriumtestforuseintheabsenceofpopulationstratification |