Cargando…
Local false discovery rate and minimum total error rate approaches to identifying interesting chromosomal regions
The simultaneous testing of a large number of hypotheses in a genome scan, using individual thresholds for significance, inherently leads to inflated genome-wide false positive rates. There exist various approaches to approximating the correct genomewide p-values under various assumptions, either by...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866763/ https://www.ncbi.nlm.nih.gov/pubmed/16451632 http://dx.doi.org/10.1186/1471-2156-6-S1-S23 |
Sumario: | The simultaneous testing of a large number of hypotheses in a genome scan, using individual thresholds for significance, inherently leads to inflated genome-wide false positive rates. There exist various approaches to approximating the correct genomewide p-values under various assumptions, either by way of asymptotics or simulations. We explore a philosophically different criterion, recently proposed in the literature, which controls the false discovery rate. The test statistics are assumed to arise from a mixture of distributions under the null and non-null hypotheses. We fit the mixture distribution using both a nonparametric approach and commingling analysis, and then apply the local false discovery rate to select cut-off points for regions to be declared interesting. Another criterion, the minimum total error, is also explored. Both criteria seem to be sensible alternatives to controlling the classical type I and type II error rates. |
---|