Cargando…
Analysis of alcoholism data using support vector machines
A supervised learning method, support vector machine, was used to analyze the microsatellite marker dataset of the Collaborative Study on the Genetics of Alcoholism Problem 1 for the Genetic Analysis Workshop 14. Twelve binary-valued phenotype variables were chosen for analyses using the markers fro...
Autores principales: | Yu, Robert, Shete, Sanjay |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866800/ https://www.ncbi.nlm.nih.gov/pubmed/16451595 http://dx.doi.org/10.1186/1471-2156-6-S1-S136 |
Ejemplares similares
-
Seeking gene relationships in gene expression data using support vector machine regression
por: Yu, Robert, et al.
Publicado: (2007) -
Genetic imprinting analysis for alcoholism genes using variance components approach
por: Shete, Sanjay, et al.
Publicado: (2005) -
Analysis of genes for alcoholism using two-disease-locus models
por: Wu, Chih-Chieh, et al.
Publicado: (2005) -
Gaussian graphical models for phenotypes using pedigree data and exploratory analysis using networks with genetic and nongenetic factors based on Genetic Analysis Workshop 18 data
por: Talluri, Rajesh, et al.
Publicado: (2014) -
Comparison of multilevel modeling and the family-based association test for identifying genetic variants associated with systolic and diastolic blood pressure using Genetic Analysis Workshop 18 simulated data
por: Wang, Jian, et al.
Publicado: (2014)