Cargando…
Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity
BACKGROUND: The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868760/ https://www.ncbi.nlm.nih.gov/pubmed/17448255 http://dx.doi.org/10.1186/1471-2164-8-107 |
_version_ | 1782133401510215680 |
---|---|
author | Montanini, Barbara Blaudez, Damien Jeandroz, Sylvain Sanders, Dale Chalot, Michel |
author_facet | Montanini, Barbara Blaudez, Damien Jeandroz, Sylvain Sanders, Dale Chalot, Michel |
author_sort | Montanini, Barbara |
collection | PubMed |
description | BACKGROUND: The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. RESULTS: Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn(2+ )transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. CONCLUSION: In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members. |
format | Text |
id | pubmed-1868760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18687602007-05-15 Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity Montanini, Barbara Blaudez, Damien Jeandroz, Sylvain Sanders, Dale Chalot, Michel BMC Genomics Research Article BACKGROUND: The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. RESULTS: Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn(2+ )transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. CONCLUSION: In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members. BioMed Central 2007-04-23 /pmc/articles/PMC1868760/ /pubmed/17448255 http://dx.doi.org/10.1186/1471-2164-8-107 Text en Copyright © 2007 Montanini et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Montanini, Barbara Blaudez, Damien Jeandroz, Sylvain Sanders, Dale Chalot, Michel Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title | Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title_full | Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title_fullStr | Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title_full_unstemmed | Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title_short | Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity |
title_sort | phylogenetic and functional analysis of the cation diffusion facilitator (cdf) family: improved signature and prediction of substrate specificity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868760/ https://www.ncbi.nlm.nih.gov/pubmed/17448255 http://dx.doi.org/10.1186/1471-2164-8-107 |
work_keys_str_mv | AT montaninibarbara phylogeneticandfunctionalanalysisofthecationdiffusionfacilitatorcdffamilyimprovedsignatureandpredictionofsubstratespecificity AT blaudezdamien phylogeneticandfunctionalanalysisofthecationdiffusionfacilitatorcdffamilyimprovedsignatureandpredictionofsubstratespecificity AT jeandrozsylvain phylogeneticandfunctionalanalysisofthecationdiffusionfacilitatorcdffamilyimprovedsignatureandpredictionofsubstratespecificity AT sandersdale phylogeneticandfunctionalanalysisofthecationdiffusionfacilitatorcdffamilyimprovedsignatureandpredictionofsubstratespecificity AT chalotmichel phylogeneticandfunctionalanalysisofthecationdiffusionfacilitatorcdffamilyimprovedsignatureandpredictionofsubstratespecificity |