Cargando…
Polarity and intracellular compartmentalization of Drosophila neurons
BACKGROUND: Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced). In ma...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868948/ https://www.ncbi.nlm.nih.gov/pubmed/17470283 http://dx.doi.org/10.1186/1749-8104-2-7 |
_version_ | 1782133419664211968 |
---|---|
author | Rolls, Melissa M Satoh, Daisuke Clyne, Peter J Henner, Astra L Uemura, Tadashi Doe, Chris Q |
author_facet | Rolls, Melissa M Satoh, Daisuke Clyne, Peter J Henner, Astra L Uemura, Tadashi Doe, Chris Q |
author_sort | Rolls, Melissa M |
collection | PubMed |
description | BACKGROUND: Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced). In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. RESULTS: Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. CONCLUSION: We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments. |
format | Text |
id | pubmed-1868948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18689482007-05-16 Polarity and intracellular compartmentalization of Drosophila neurons Rolls, Melissa M Satoh, Daisuke Clyne, Peter J Henner, Astra L Uemura, Tadashi Doe, Chris Q Neural Develop Research Article BACKGROUND: Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced). In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. RESULTS: Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. CONCLUSION: We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments. BioMed Central 2007-04-30 /pmc/articles/PMC1868948/ /pubmed/17470283 http://dx.doi.org/10.1186/1749-8104-2-7 Text en Copyright © 2007 Rolls et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rolls, Melissa M Satoh, Daisuke Clyne, Peter J Henner, Astra L Uemura, Tadashi Doe, Chris Q Polarity and intracellular compartmentalization of Drosophila neurons |
title | Polarity and intracellular compartmentalization of Drosophila neurons |
title_full | Polarity and intracellular compartmentalization of Drosophila neurons |
title_fullStr | Polarity and intracellular compartmentalization of Drosophila neurons |
title_full_unstemmed | Polarity and intracellular compartmentalization of Drosophila neurons |
title_short | Polarity and intracellular compartmentalization of Drosophila neurons |
title_sort | polarity and intracellular compartmentalization of drosophila neurons |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868948/ https://www.ncbi.nlm.nih.gov/pubmed/17470283 http://dx.doi.org/10.1186/1749-8104-2-7 |
work_keys_str_mv | AT rollsmelissam polarityandintracellularcompartmentalizationofdrosophilaneurons AT satohdaisuke polarityandintracellularcompartmentalizationofdrosophilaneurons AT clynepeterj polarityandintracellularcompartmentalizationofdrosophilaneurons AT hennerastral polarityandintracellularcompartmentalizationofdrosophilaneurons AT uemuratadashi polarityandintracellularcompartmentalizationofdrosophilaneurons AT doechrisq polarityandintracellularcompartmentalizationofdrosophilaneurons |