Cargando…
Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states....
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868950/ https://www.ncbi.nlm.nih.gov/pubmed/17511522 http://dx.doi.org/10.1371/journal.pgen.0030081 |
_version_ | 1782133420391923712 |
---|---|
author | Kadota, Mitsutaka Yang, Howard H Hu, Nan Wang, Chaoyu Hu, Ying Taylor, Philip R Buetow, Kenneth H Lee, Maxwell P |
author_facet | Kadota, Mitsutaka Yang, Howard H Hu, Nan Wang, Chaoyu Hu, Ying Taylor, Philip R Buetow, Kenneth H Lee, Maxwell P |
author_sort | Kadota, Mitsutaka |
collection | PubMed |
description | Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena. |
format | Text |
id | pubmed-1868950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-18689502007-05-18 Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome Kadota, Mitsutaka Yang, Howard H Hu, Nan Wang, Chaoyu Hu, Ying Taylor, Philip R Buetow, Kenneth H Lee, Maxwell P PLoS Genet Research Article Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena. Public Library of Science 2007-05 2007-05-18 /pmc/articles/PMC1868950/ /pubmed/17511522 http://dx.doi.org/10.1371/journal.pgen.0030081 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Kadota, Mitsutaka Yang, Howard H Hu, Nan Wang, Chaoyu Hu, Ying Taylor, Philip R Buetow, Kenneth H Lee, Maxwell P Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title | Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title_full | Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title_fullStr | Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title_full_unstemmed | Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title_short | Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome |
title_sort | allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868950/ https://www.ncbi.nlm.nih.gov/pubmed/17511522 http://dx.doi.org/10.1371/journal.pgen.0030081 |
work_keys_str_mv | AT kadotamitsutaka allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT yanghowardh allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT hunan allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT wangchaoyu allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT huying allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT taylorphilipr allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT buetowkennethh allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome AT leemaxwellp allelespecificchromatinimmunoprecipitationstudiesshowgeneticinfluenceonchromatinstateinhumangenome |