Cargando…

Protein annotation as term categorization in the gene ontology using word proximity networks

BACKGROUND: We participated in the BioCreAtIvE Task 2, which addressed the annotation of proteins into the Gene Ontology (GO) based on the text of a given document and the selection of evidence text from the document justifying that annotation. We approached the task utilizing several combinations o...

Descripción completa

Detalles Bibliográficos
Autores principales: Verspoor, Karin, Cohn, Judith, Joslyn, Cliff, Mniszewski, Sue, Rechtsteiner, Andreas, Rocha, Luis M, Simas, Tiago
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1869013/
https://www.ncbi.nlm.nih.gov/pubmed/15960833
http://dx.doi.org/10.1186/1471-2105-6-S1-S20
Descripción
Sumario:BACKGROUND: We participated in the BioCreAtIvE Task 2, which addressed the annotation of proteins into the Gene Ontology (GO) based on the text of a given document and the selection of evidence text from the document justifying that annotation. We approached the task utilizing several combinations of two distinct methods: an unsupervised algorithm for expanding words associated with GO nodes, and an annotation methodology which treats annotation as categorization of terms from a protein's document neighborhood into the GO. RESULTS: The evaluation results indicate that the method for expanding words associated with GO nodes is quite powerful; we were able to successfully select appropriate evidence text for a given annotation in 38% of Task 2.1 queries by building on this method. The term categorization methodology achieved a precision of 16% for annotation within the correct extended family in Task 2.2, though we show through subsequent analysis that this can be improved with a different parameter setting. Our architecture proved not to be very successful on the evidence text component of the task, in the configuration used to generate the submitted results. CONCLUSION: The initial results show promise for both of the methods we explored, and we are planning to integrate the methods more closely to achieve better results overall.