Cargando…
Genome sequence analysis of La Crosse virus and in vitro and in vivo phenotypes
BACKGROUND: La Crosse virus (LACV), family Bunyaviridae, is a mosquito-borne virus recognized as a major cause of pediatric encephalitis in North America with 70–130 symptomatic cases each year. The virus was first identified as a human pathogen in 1960 after its isolation from a 4 year-old girl who...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1877800/ https://www.ncbi.nlm.nih.gov/pubmed/17488515 http://dx.doi.org/10.1186/1743-422X-4-41 |
Sumario: | BACKGROUND: La Crosse virus (LACV), family Bunyaviridae, is a mosquito-borne virus recognized as a major cause of pediatric encephalitis in North America with 70–130 symptomatic cases each year. The virus was first identified as a human pathogen in 1960 after its isolation from a 4 year-old girl who suffered encephalitis and died in La Crosse, Wisconsin. The majority of LACV infections are mild and never reported, however, serologic studies estimate infection rates of 10–30/100,000 in endemic areas. RESULTS: In the present study, sequence analysis of the complete LACV genomes of low-passage LACV/human/1960, LACV/mosquito/1978, and LACV/human/1978 strains and of biologically cloned derivatives of each strain, indicates that circulating LACVs are genetically stable over time and geographic distance with 99.6–100%, 98.9–100%, 97.8–99.6%, and 99.2–99.7% amino acid identity for N, NsS, M polyprotein, and L proteins respectively. We identified 5 amino acid differences in the RNA polymerase and 4 nucleotide differences in the non-coding region of the L segment specific to the human virus isolates, which may result in altered disease outcomes. CONCLUSION: All three wild type viruses had similar in vitro growth kinetics and phenotypes in mosquito C6/36 and Vero cells, and similar levels of neurovirulence and neuroinvasiveness in Swiss Webster mice. The biologically cloned derivative of LACV/human/1960 was significantly less neuroinvasive than its uncloned parent and differed in sequence at one amino acid position in the G(N )glycoprotein, identifying this residue as an attenuating mutation. |
---|