Cargando…
Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
BACKGROUND: Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensio...
Autores principales: | Yousef, Malik, Jung, Segun, Showe, Louise C, Showe, Michael K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1877816/ https://www.ncbi.nlm.nih.gov/pubmed/17474999 http://dx.doi.org/10.1186/1471-2105-8-144 |
Ejemplares similares
-
Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME
por: Yousef, Malik, et al.
Publicado: (2021) -
Learning from positive examples when the negative class is undetermined- microRNA gene identification
por: Yousef, Malik, et al.
Publicado: (2008) -
Classification and biomarker identification using gene network modules and support vector machines
por: Yousef, Malik, et al.
Publicado: (2009) -
GediNET for discovering gene associations across diseases using knowledge based machine learning approach
por: Qumsiyeh, Emma, et al.
Publicado: (2022) -
Clinical presentation of COVID-19 – a model derived by a machine learning algorithm
por: Yousef, Malik, et al.
Publicado: (2021)