Cargando…

The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly

BACKGROUND: The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are...

Descripción completa

Detalles Bibliográficos
Autores principales: Monteiro, Antónia, Chen, Bin, Scott, Lauren C, Vedder, Lindsey, Prijs, H Joop, Belicha-Villanueva, Alan, Brakefield, Paul M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1878498/
https://www.ncbi.nlm.nih.gov/pubmed/17498305
http://dx.doi.org/10.1186/1471-2156-8-22
Descripción
Sumario:BACKGROUND: The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are the serially homologous eyespots that can decorate each of these wings. Eyespots can vary in number between fore and hindwings of the same individual and mutations of large effect can control the total number of eyespots that each of the wings displays. Here we investigate the genetics of a new spontaneous color pattern mutation, Missing, that alters eyespot number in the nymphalid butterfly, Bicyclus anynana. We further test the interaction of Missing with a previously described mutation, Spotty, describe the developmental stage affected by Missing, and test whether Missing is a mutant variant of the gene Distal-less via a linkage association study. RESULTS: Missing removes or greatly reduces the size of two of the hindwing eyespots from the row of seven eyespots, with no detectable effect on the rest of the wing pattern. Offspring carrying a single Missing allele display intermediate sized eyespots at these positions. Spotty has the opposite effect of Missing, i.e., it introduces two extra eyespots in homologous wing positions to those affected by Missing, but on the forewing. When Missing is combined with Spotty the size of the two forewing eyespots decreases but the size of the hindwing spots stays the same, suggesting that these two mutations have a combined effect on the forewing such that Missing reduces eyespot size when in the presence of a Spotty mutant allele, but that Spotty has no effect on the hindwing. Missing prevents the complete differentiation of two of the eyespot foci on the hindwing. We found no evidence for any linkage between the Distal-less and Missing genes. CONCLUSION: The spontaneous mutation Missing controls the differentiation of the signaling centers of a subset of the serial homologous eyespots present on both the fore and the hindwing in a dose-dependent fashion. The effect of Missing on the forewing, however, is only observed when the mutation Spotty introduces additional eyespots on this wing. Spotty, on the other hand, controls the differentiation of eyespot centers only on the forewing. Spotty, unlike Missing, may be under Ubx gene regulation, since it affects a subset of eyespots on only one of the serially homologous wings.