Cargando…
Discovery and characterization of 91 novel transcripts expressed in cattle placenta
BACKGROUND: Among the eutherian mammals, placental architecture varies to a greater extent than any other tissue. The diversity of placental types, even within a single mammalian order suggests that genes expressed in placenta are under strong Darwinian selection. Thus, the ruminant placenta may be...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884150/ https://www.ncbi.nlm.nih.gov/pubmed/17488528 http://dx.doi.org/10.1186/1471-2164-8-113 |
_version_ | 1782133597803642880 |
---|---|
author | Kumar, Charu G Larson, Joshua H Band, Mark R Lewin, Harris A |
author_facet | Kumar, Charu G Larson, Joshua H Band, Mark R Lewin, Harris A |
author_sort | Kumar, Charu G |
collection | PubMed |
description | BACKGROUND: Among the eutherian mammals, placental architecture varies to a greater extent than any other tissue. The diversity of placental types, even within a single mammalian order suggests that genes expressed in placenta are under strong Darwinian selection. Thus, the ruminant placenta may be a rich source of genes to explore adaptive evolutionary responses in mammals. The aim of our study was to identify novel transcripts expressed in ruminant placenta, and to characterize them with respect to their expression patterns, organization of coding sequences in the genome, and potential functions. RESULTS: A combination of bioinformatics, comparative genomics and transcript profiling was used to identify and characterize 91 novel transcripts (NTs) represented in a cattle placenta cDNA library. These NTs have no significant similarity to any non-ferungulate DNA or RNA sequence. Proteins longer than 100 aa were predicted for 29 NTs, and 21 are candidate non-coding RNAs. Eighty-six NTs were found to be expressed in one or more of 18 different tissues, with 39 (42%) showing tissue-preference, including six that were expressed exclusively in placentome. The authenticity of the NTs was confirmed by their alignment to cattle genome sequence, 42 of which showed evidence of mRNA splicing. Analysis of the genomic context where NT genes reside revealed 61 to be in intergenic regions, whereas 30 are within introns of known genes. The genes encoding the NTs were found to be significantly associated with subtelomeric regions. CONCLUSION: The 91 lineage-specific transcripts are a useful resource for studying adaptive evolutionary responses of the ruminant placenta. The presence of so many genes encoding NTs in cattle but not primates or rodents suggests that gene loss and gain are important mechanisms of genome evolution in mammals. Furthermore, the clustering of NT genes within subtelomeric regions suggests that such regions are highly dynamic and may foster the birth of novel genes. The sequencing of additional vertebrate genomes with defined phylogenetic relationships will permit the search for lineage-specific genes to take on a more evolutionary context that is required to understand their origins and functions. |
format | Text |
id | pubmed-1884150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18841502007-05-30 Discovery and characterization of 91 novel transcripts expressed in cattle placenta Kumar, Charu G Larson, Joshua H Band, Mark R Lewin, Harris A BMC Genomics Research Article BACKGROUND: Among the eutherian mammals, placental architecture varies to a greater extent than any other tissue. The diversity of placental types, even within a single mammalian order suggests that genes expressed in placenta are under strong Darwinian selection. Thus, the ruminant placenta may be a rich source of genes to explore adaptive evolutionary responses in mammals. The aim of our study was to identify novel transcripts expressed in ruminant placenta, and to characterize them with respect to their expression patterns, organization of coding sequences in the genome, and potential functions. RESULTS: A combination of bioinformatics, comparative genomics and transcript profiling was used to identify and characterize 91 novel transcripts (NTs) represented in a cattle placenta cDNA library. These NTs have no significant similarity to any non-ferungulate DNA or RNA sequence. Proteins longer than 100 aa were predicted for 29 NTs, and 21 are candidate non-coding RNAs. Eighty-six NTs were found to be expressed in one or more of 18 different tissues, with 39 (42%) showing tissue-preference, including six that were expressed exclusively in placentome. The authenticity of the NTs was confirmed by their alignment to cattle genome sequence, 42 of which showed evidence of mRNA splicing. Analysis of the genomic context where NT genes reside revealed 61 to be in intergenic regions, whereas 30 are within introns of known genes. The genes encoding the NTs were found to be significantly associated with subtelomeric regions. CONCLUSION: The 91 lineage-specific transcripts are a useful resource for studying adaptive evolutionary responses of the ruminant placenta. The presence of so many genes encoding NTs in cattle but not primates or rodents suggests that gene loss and gain are important mechanisms of genome evolution in mammals. Furthermore, the clustering of NT genes within subtelomeric regions suggests that such regions are highly dynamic and may foster the birth of novel genes. The sequencing of additional vertebrate genomes with defined phylogenetic relationships will permit the search for lineage-specific genes to take on a more evolutionary context that is required to understand their origins and functions. BioMed Central 2007-05-09 /pmc/articles/PMC1884150/ /pubmed/17488528 http://dx.doi.org/10.1186/1471-2164-8-113 Text en Copyright © 2007 Kumar et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kumar, Charu G Larson, Joshua H Band, Mark R Lewin, Harris A Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title | Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title_full | Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title_fullStr | Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title_full_unstemmed | Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title_short | Discovery and characterization of 91 novel transcripts expressed in cattle placenta |
title_sort | discovery and characterization of 91 novel transcripts expressed in cattle placenta |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884150/ https://www.ncbi.nlm.nih.gov/pubmed/17488528 http://dx.doi.org/10.1186/1471-2164-8-113 |
work_keys_str_mv | AT kumarcharug discoveryandcharacterizationof91noveltranscriptsexpressedincattleplacenta AT larsonjoshuah discoveryandcharacterizationof91noveltranscriptsexpressedincattleplacenta AT bandmarkr discoveryandcharacterizationof91noveltranscriptsexpressedincattleplacenta AT lewinharrisa discoveryandcharacterizationof91noveltranscriptsexpressedincattleplacenta |